Porous silicon is a nano material in which pores with different sizes, densities and depths are infiltrated in conventional silicon imparting it augmented properties including biodegradability, biocompatibility, photoluminescence. Here, we realized porous silicon substrates in which the pore size and the fractal dimension were varied over a significant range. We loaded the described substrates with a PtCl(O, O′ − acac)(DMSO) antitumor drug and determined its release profile as a function of pore size over time up to 15 days. We observed that the efficacy of delivery augments with the pore size moving from small (∼ 8 nm, efficiency of delivery ∼ 0.2) to large (∼ 55 nm, efficiency of delivery ∼ 0.7). Then, we verified the adhesion of MCF-7 breast cancer cells on the described substrates with and without the administration of the antitumor drug. This permitted to decouple and understand the coincidental effects of nano-topography and a controlled dosage of drugs on cell adhesion and growth. While large pore sizes guarantee elevated drug dosages, large fractal dimensions boost cell adhesion on a surface. For the particular case of tumor cells and the delivery of an anti-tumor drug, substrates with a small fractal dimension and large pore size hamper cell growth. The competition between nano-topography and a controlled dosage of drugs may either accelerate or block the adhesion of cells on a nanostructured surface, for applications in tissue engineering, regenerative medicine, personalized lab-on-a-chips, and the rational design of implantable drug delivery systems.

Combined effect of surface nano-topography and delivery of therapeutics on the adhesion of tumor cells on porous silicon substrates / De Vitis, S.; Coluccio, M. L.; Strumbo, G.; Malara, N.; Fanizzi, F. P.; De Pascali, S. A.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E.; Gentile, Francesco. - In: MICROELECTRONIC ENGINEERING. - ISSN 0167-9317. - 158:(2016), pp. 6-10. [10.1016/j.mee.2016.02.033]

Combined effect of surface nano-topography and delivery of therapeutics on the adhesion of tumor cells on porous silicon substrates

GENTILE, Francesco
2016

Abstract

Porous silicon is a nano material in which pores with different sizes, densities and depths are infiltrated in conventional silicon imparting it augmented properties including biodegradability, biocompatibility, photoluminescence. Here, we realized porous silicon substrates in which the pore size and the fractal dimension were varied over a significant range. We loaded the described substrates with a PtCl(O, O′ − acac)(DMSO) antitumor drug and determined its release profile as a function of pore size over time up to 15 days. We observed that the efficacy of delivery augments with the pore size moving from small (∼ 8 nm, efficiency of delivery ∼ 0.2) to large (∼ 55 nm, efficiency of delivery ∼ 0.7). Then, we verified the adhesion of MCF-7 breast cancer cells on the described substrates with and without the administration of the antitumor drug. This permitted to decouple and understand the coincidental effects of nano-topography and a controlled dosage of drugs on cell adhesion and growth. While large pore sizes guarantee elevated drug dosages, large fractal dimensions boost cell adhesion on a surface. For the particular case of tumor cells and the delivery of an anti-tumor drug, substrates with a small fractal dimension and large pore size hamper cell growth. The competition between nano-topography and a controlled dosage of drugs may either accelerate or block the adhesion of cells on a nanostructured surface, for applications in tissue engineering, regenerative medicine, personalized lab-on-a-chips, and the rational design of implantable drug delivery systems.
2016
Combined effect of surface nano-topography and delivery of therapeutics on the adhesion of tumor cells on porous silicon substrates / De Vitis, S.; Coluccio, M. L.; Strumbo, G.; Malara, N.; Fanizzi, F. P.; De Pascali, S. A.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E.; Gentile, Francesco. - In: MICROELECTRONIC ENGINEERING. - ISSN 0167-9317. - 158:(2016), pp. 6-10. [10.1016/j.mee.2016.02.033]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/648062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact