The removal of methylparaben (MP), a well-known endocrine disruptor, from aqueous solutions using polyacrylonitrile (PAN) beads has been studied under batch conditions, at room temperature and at different initial MP concentrations. The kinetic and equilibrium results have been analyzed. Kinetic modeling analysis has been carried out with three different types of adsorption models: pseudo-first-order, pseudo-second-order, and Elovich model. Kinetic data analysis indicated that the adsorption was a second-order process. The MP adsorption by PAN was also quantitatively evaluated by using the equilibrium adsorption isotherm models of Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin and the applicability of the respective isotherm equations has been compared through the correlation coefficients. Adsorption data resulted well fitted by the Freundlich isotherm model. Data of MP adsorption have also been used to test different adsorption diffusion models. The diffusion rate equations inside particulate of Dumwald-Wagner and the intraparticle diffusion model have been used to calculate the diffusion rate. The actual rate-controlling step involved in the MB adsorption process was determined. The kinetic expression by Boyd gave the right indications. All together, our results indicate that PAN beads are a useful tool to remediate water bodies polluted by endocrine disruptors.

Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies / Forte, Maurizio; Mita, Luigi; Perrone, Rosa; Rossi, Sergio; Argirò, Mario; Mita, Damiano Gustavo; Guida, Marco; Portaccio, Marianna; Godievargova, Tzonka; Ivanov, Yavour; Tamer, Mahmoud T; Omer, Ahmed M; Mohy Eldin, Mohamed S.. - In: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL. - ISSN 0944-1344. - (2016). [10.1007/s11356-016-7846-z]

Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies

GUIDA, MARCO;
2016

Abstract

The removal of methylparaben (MP), a well-known endocrine disruptor, from aqueous solutions using polyacrylonitrile (PAN) beads has been studied under batch conditions, at room temperature and at different initial MP concentrations. The kinetic and equilibrium results have been analyzed. Kinetic modeling analysis has been carried out with three different types of adsorption models: pseudo-first-order, pseudo-second-order, and Elovich model. Kinetic data analysis indicated that the adsorption was a second-order process. The MP adsorption by PAN was also quantitatively evaluated by using the equilibrium adsorption isotherm models of Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin and the applicability of the respective isotherm equations has been compared through the correlation coefficients. Adsorption data resulted well fitted by the Freundlich isotherm model. Data of MP adsorption have also been used to test different adsorption diffusion models. The diffusion rate equations inside particulate of Dumwald-Wagner and the intraparticle diffusion model have been used to calculate the diffusion rate. The actual rate-controlling step involved in the MB adsorption process was determined. The kinetic expression by Boyd gave the right indications. All together, our results indicate that PAN beads are a useful tool to remediate water bodies polluted by endocrine disruptors.
2016
Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies / Forte, Maurizio; Mita, Luigi; Perrone, Rosa; Rossi, Sergio; Argirò, Mario; Mita, Damiano Gustavo; Guida, Marco; Portaccio, Marianna; Godievargova, Tzonka; Ivanov, Yavour; Tamer, Mahmoud T; Omer, Ahmed M; Mohy Eldin, Mohamed S.. - In: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL. - ISSN 0944-1344. - (2016). [10.1007/s11356-016-7846-z]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/647524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact