We have recently demonstrated that the specific inhibition of nuclear factor-κB by a decoy oligonucleotide (dec-ODN) delivered through inhalable large porous particles (LPP) made of poly(lactic-co-glycolic acid) (PLGA) may be highly beneficial for long-term treatment of lung inflammation. Nevertheless, besides chronic inflammation, multifunctional systems aimed to control also infection are required in chronic lung diseases, such as cystic fibrosis (CF). In this work, we tested the hypothesis that engineering PLGA-based LPP with branched poly(ethylenimine) (PEI) may improve LPP properties for pulmonary delivery of dec-ODN, with particular regard to the treatment of Pseudomonas aeruginosa lung infections. After getting insight into the role of PEI on the technological properties of PLGA-based LPP for delivery of dec-ODN, the putative synergistic effect of PEI free or PEI released from LPP on in vitro antimicrobial activity of tobramycin (Tb) and aztreonam (AZT) against P. aeruginosa was elucidated. Meanwhile, cytotoxicity studies on A549 cells were carried out. Results clearly demonstrate that the dry powders have promising aerosolization properties and afford a prolonged in vitro release of both dec-ODN and PEI. The encapsulation of PEI into LPP results in a 2-fold reduction of the minimum inhibitory concentration of AZT, while reducing the cytotoxic effect of PEI. Of note, the developed ODN/PLGA/PEI LPP persisted at lung at least for 14 days after intratracheal administration in rats where they can provide sustained and combined release of dec-ODN and PEI. dec-ODN will likely act as an anti-inflammatory drug, while PEI may enhance the therapeutic activity of inhaled antibiotics, which are commonly employed for the treatment of concomitant lung infections.

Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic Pseudomonas aeruginosa Lung Infections / D'Angelo, Ivana; Perfetto, Brunella; Costabile, Gabriella; Ambrosini, Veronica; Caputo, Pina; Miro, Agnese; D'EMMANUELE DI VILLA BIANCA, Roberta; Sorrentino, Raffaella; Donnarumma, Giovanna; Quaglia, Fabiana; Ungaro, Francesca. - In: BIOMACROMOLECULES. - ISSN 1525-7797. - 17:5(2016), pp. 1561-1571. [10.1021/acs.biomac.5b01646]

Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic Pseudomonas aeruginosa Lung Infections

COSTABILE, GABRIELLA;MIRO, AGNESE;D'EMMANUELE DI VILLA BIANCA, ROBERTA;SORRENTINO, RAFFAELLA;QUAGLIA, FABIANA
Penultimo
;
UNGARO, FRANCESCA
Ultimo
2016

Abstract

We have recently demonstrated that the specific inhibition of nuclear factor-κB by a decoy oligonucleotide (dec-ODN) delivered through inhalable large porous particles (LPP) made of poly(lactic-co-glycolic acid) (PLGA) may be highly beneficial for long-term treatment of lung inflammation. Nevertheless, besides chronic inflammation, multifunctional systems aimed to control also infection are required in chronic lung diseases, such as cystic fibrosis (CF). In this work, we tested the hypothesis that engineering PLGA-based LPP with branched poly(ethylenimine) (PEI) may improve LPP properties for pulmonary delivery of dec-ODN, with particular regard to the treatment of Pseudomonas aeruginosa lung infections. After getting insight into the role of PEI on the technological properties of PLGA-based LPP for delivery of dec-ODN, the putative synergistic effect of PEI free or PEI released from LPP on in vitro antimicrobial activity of tobramycin (Tb) and aztreonam (AZT) against P. aeruginosa was elucidated. Meanwhile, cytotoxicity studies on A549 cells were carried out. Results clearly demonstrate that the dry powders have promising aerosolization properties and afford a prolonged in vitro release of both dec-ODN and PEI. The encapsulation of PEI into LPP results in a 2-fold reduction of the minimum inhibitory concentration of AZT, while reducing the cytotoxic effect of PEI. Of note, the developed ODN/PLGA/PEI LPP persisted at lung at least for 14 days after intratracheal administration in rats where they can provide sustained and combined release of dec-ODN and PEI. dec-ODN will likely act as an anti-inflammatory drug, while PEI may enhance the therapeutic activity of inhaled antibiotics, which are commonly employed for the treatment of concomitant lung infections.
2016
Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic Pseudomonas aeruginosa Lung Infections / D'Angelo, Ivana; Perfetto, Brunella; Costabile, Gabriella; Ambrosini, Veronica; Caputo, Pina; Miro, Agnese; D'EMMANUELE DI VILLA BIANCA, Roberta; Sorrentino, Raffaella; Donnarumma, Giovanna; Quaglia, Fabiana; Ungaro, Francesca. - In: BIOMACROMOLECULES. - ISSN 1525-7797. - 17:5(2016), pp. 1561-1571. [10.1021/acs.biomac.5b01646]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/641231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact