The recessive ataxia-telangiectasia (A-T) syndrome is characterized by cerebellar degeneration, immunodeficiency, cancer susceptibility, premature aging, and insulin-resistant diabetes and is caused by loss of function of the ATM kinase, a member of the phosphoinositide 3-kinase-like protein kinases (PIKKs) family. ATM plays a crucial role in the DNA damage response (DDR); however, the complexity of A-T features suggests that ATM may regulate other cellular functions. Here we show that ATM affects proper bipolar mitotic spindle structure independently of DNA damage. In addition, we find that in mitosis ATM forms a complex with the poly(ADP)ribose (PAR) polymerase Tankyrase (TNKS) 1, the spindle pole protein NuMA1, and breast cancer susceptibility protein BRCA1, another crucial DDR player. Our evidence indicates that the complex is required for efficient poly(ADP)ribosylation of NuMA1. We find further that a mutant NuMA1 version, non-phosphorylatable at potential ATM-dependent phosphorylation sites, is poorly PARylated and induces loss of spindle bipolarity. Our findings may help to explain crucial A-T features and provide further mechanistic rationale for TNKS inhibition in cancer therapy.

ATM controls proper mitotic spindle structure / Palazzo, Luca; DELLA MONICA, Rosa; Visconti, Roberta; Costanzo, Vincenzo; Grieco, Domenico. - In: CELL CYCLE. - ISSN 1538-4101. - 13:7(2014), pp. 1091-1100. [10.4161/cc.27945]

ATM controls proper mitotic spindle structure

PALAZZO, LUCA;DELLA MONICA, ROSA;VISCONTI, ROBERTA;COSTANZO, VINCENZO;GRIECO, DOMENICO
2014

Abstract

The recessive ataxia-telangiectasia (A-T) syndrome is characterized by cerebellar degeneration, immunodeficiency, cancer susceptibility, premature aging, and insulin-resistant diabetes and is caused by loss of function of the ATM kinase, a member of the phosphoinositide 3-kinase-like protein kinases (PIKKs) family. ATM plays a crucial role in the DNA damage response (DDR); however, the complexity of A-T features suggests that ATM may regulate other cellular functions. Here we show that ATM affects proper bipolar mitotic spindle structure independently of DNA damage. In addition, we find that in mitosis ATM forms a complex with the poly(ADP)ribose (PAR) polymerase Tankyrase (TNKS) 1, the spindle pole protein NuMA1, and breast cancer susceptibility protein BRCA1, another crucial DDR player. Our evidence indicates that the complex is required for efficient poly(ADP)ribosylation of NuMA1. We find further that a mutant NuMA1 version, non-phosphorylatable at potential ATM-dependent phosphorylation sites, is poorly PARylated and induces loss of spindle bipolarity. Our findings may help to explain crucial A-T features and provide further mechanistic rationale for TNKS inhibition in cancer therapy.
2014
ATM controls proper mitotic spindle structure / Palazzo, Luca; DELLA MONICA, Rosa; Visconti, Roberta; Costanzo, Vincenzo; Grieco, Domenico. - In: CELL CYCLE. - ISSN 1538-4101. - 13:7(2014), pp. 1091-1100. [10.4161/cc.27945]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/618737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact