Let Γ=(G,σ) be a signed graph, where G is the underlying graph and σ:E(G)→{+,-} is the signature function on the edges of G. In this paper, we consider the Laplacian eigenvalues of signed graphs and we characterize the connected signed graphs whose second largest Laplacian eigenvalue does not exceed 3. Furthermore, we study the Laplacian spectral determination of most graphs in the latter family.

On signed graphs whose second largest Laplacian eigenvalue does not exceed 3

BELARDO, Francesco;
2016

Abstract

Let Γ=(G,σ) be a signed graph, where G is the underlying graph and σ:E(G)→{+,-} is the signature function on the edges of G. In this paper, we consider the Laplacian eigenvalues of signed graphs and we characterize the connected signed graphs whose second largest Laplacian eigenvalue does not exceed 3. Furthermore, we study the Laplacian spectral determination of most graphs in the latter family.
File in questo prodotto:
File Dimensione Formato  
On signed graphs whose second largest Laplacian eigenvalue does not exceed 3.pdf

non disponibili

Descrizione: Documento pubblicato online in versione post-print.
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 551.41 kB
Formato Adobe PDF
551.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/617141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact