The use of charged particle therapy to control tumours non-invasively offers advantages over conventional radiotherapy. Protons and heavy ions deposit energy far more selectively than X-rays, allowing a higher local control of the tumour, a lower probability of damage to healthy tissue, low risk of complications and the chance for a rapid recovery after therapy. Charged particles are also useful for treating tumours located in areas that surround tissues that are radiosensitive and in anatomical sites where surgical access is limited. Current trial outcomes indicate that accelerated ions can potentially replace surgery for radical cancer treatments, which might be beneficial as the success of surgical cancer treatments are largely dependent on the expertise and experience of the surgeon and the location of the tumour. However, to date, only a small number of controlled randomized clinical trials have made comparisons between particle therapy and X-rays. Therefore, although the potential advantages are clear and supported by data, the cost:benefit ratio remains controversial. Research in medical physics and radiobiology is focusing on reducing the costs and increasing the benefits of this treatment.

Charged particle therapy--optimization, challenges and future directions / Loeffler, Jay S; Durante, Marco. - In: NATURE REVIEWS. CLINICAL ONCOLOGY. - ISSN 1759-4774. - 10:7(2013), pp. 411-24-424. [10.1038/nrclinonc.2013.79]

Charged particle therapy--optimization, challenges and future directions

DURANTE, MARCO
2013

Abstract

The use of charged particle therapy to control tumours non-invasively offers advantages over conventional radiotherapy. Protons and heavy ions deposit energy far more selectively than X-rays, allowing a higher local control of the tumour, a lower probability of damage to healthy tissue, low risk of complications and the chance for a rapid recovery after therapy. Charged particles are also useful for treating tumours located in areas that surround tissues that are radiosensitive and in anatomical sites where surgical access is limited. Current trial outcomes indicate that accelerated ions can potentially replace surgery for radical cancer treatments, which might be beneficial as the success of surgical cancer treatments are largely dependent on the expertise and experience of the surgeon and the location of the tumour. However, to date, only a small number of controlled randomized clinical trials have made comparisons between particle therapy and X-rays. Therefore, although the potential advantages are clear and supported by data, the cost:benefit ratio remains controversial. Research in medical physics and radiobiology is focusing on reducing the costs and increasing the benefits of this treatment.
2013
Charged particle therapy--optimization, challenges and future directions / Loeffler, Jay S; Durante, Marco. - In: NATURE REVIEWS. CLINICAL ONCOLOGY. - ISSN 1759-4774. - 10:7(2013), pp. 411-24-424. [10.1038/nrclinonc.2013.79]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/612958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 356
  • ???jsp.display-item.citation.isi??? 320
social impact