Eukaryotic-type Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases (STPK) are widespread in gram positive bacteria, where they regulate several cellular functions. STPKs belong to the protein kinase family named as one-component signal transduction systems,which combine both sensing and regulating properties. Thermodynamic investigations of sensing extra-cellular portions of two important Ser-Thr kinases, PrkC, from Staphylococcus aureus and Bacillus subtilis were conducted by differential scanning calorimetry (DSC) and circular dichroism(CD) melting measurements, coupled with modelling studies. The study of thermodynamic properties of the two domains is challenging since they share a modular domain organization. Consistently, DSC and CD data show that they present similar thermodynamic behaviours and that folding/unfolding transitions do not fit a two-state folding model. However, the thermal unfolding of the two proteins is differentially sensitive to pH. In particular, their unfolding is characteristic of modular structures at the neutral pH, with independent contributions of individual domains to folding. Differently, a cooperative unfolding is evidenced at acidic pH for the B. subtilis member, suggesting that a significant interaction between domains becomes valuable.

Differential thermodynamic behaviours of the extra-cellular regions of two Ser/Thr PrkC kinases revealed by calorimetric studies / Rita, Berisio; Flavia, Squeglia; Alessia, Ruggiero; Petraccone, Luigi; Stellato, MARCO IGNAZIO; DEL VECCHIO, POMPEA GIUSEPPINA GRAZIA. - In: BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS. - ISSN 1570-9639. - 1854:(2015), pp. 402-409. [10.1016/j.bbapap.2015.02.001]

Differential thermodynamic behaviours of the extra-cellular regions of two Ser/Thr PrkC kinases revealed by calorimetric studies

PETRACCONE, LUIGI;STELLATO, MARCO IGNAZIO;DEL VECCHIO, POMPEA GIUSEPPINA GRAZIA
2015

Abstract

Eukaryotic-type Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases (STPK) are widespread in gram positive bacteria, where they regulate several cellular functions. STPKs belong to the protein kinase family named as one-component signal transduction systems,which combine both sensing and regulating properties. Thermodynamic investigations of sensing extra-cellular portions of two important Ser-Thr kinases, PrkC, from Staphylococcus aureus and Bacillus subtilis were conducted by differential scanning calorimetry (DSC) and circular dichroism(CD) melting measurements, coupled with modelling studies. The study of thermodynamic properties of the two domains is challenging since they share a modular domain organization. Consistently, DSC and CD data show that they present similar thermodynamic behaviours and that folding/unfolding transitions do not fit a two-state folding model. However, the thermal unfolding of the two proteins is differentially sensitive to pH. In particular, their unfolding is characteristic of modular structures at the neutral pH, with independent contributions of individual domains to folding. Differently, a cooperative unfolding is evidenced at acidic pH for the B. subtilis member, suggesting that a significant interaction between domains becomes valuable.
2015
Differential thermodynamic behaviours of the extra-cellular regions of two Ser/Thr PrkC kinases revealed by calorimetric studies / Rita, Berisio; Flavia, Squeglia; Alessia, Ruggiero; Petraccone, Luigi; Stellato, MARCO IGNAZIO; DEL VECCHIO, POMPEA GIUSEPPINA GRAZIA. - In: BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS. - ISSN 1570-9639. - 1854:(2015), pp. 402-409. [10.1016/j.bbapap.2015.02.001]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1570963915000369-main.pdf

solo utenti autorizzati

Descrizione: articolo completo
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/607426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact