The symbiosis of Bradyrhizobium sp. BTAi1 with its host plant Aeschynomene indica relies on a Nod-factor independent mechanism, wherein the Bradyrhizobium O-antigen is regarded as a key factor. This O-antigen polysaccharide is composed of a unique C10 monosaccharide, namely bradyrhizose, which has a galactose-inositol trans-fused scaffold, via a homogeneous α-(1 → 7)-linkage. Herein, we report the first synthesis of bradyrhizose. The scalable synthesis requires 26 steps in a high overall yield of 9%, with the inositol scaffold being constructed effectively via a Ferrier II rearrangement from a fully functionalized C2 and C4 branched pyranose derivative.

Synthesis of bradyrhizose, a unique inositol-fused monosaccharide relevant to a Nod-factor independent nitrogen fixation.

SILIPO, ALBA;MOLINARO, ANTONIO;
2015

Abstract

The symbiosis of Bradyrhizobium sp. BTAi1 with its host plant Aeschynomene indica relies on a Nod-factor independent mechanism, wherein the Bradyrhizobium O-antigen is regarded as a key factor. This O-antigen polysaccharide is composed of a unique C10 monosaccharide, namely bradyrhizose, which has a galactose-inositol trans-fused scaffold, via a homogeneous α-(1 → 7)-linkage. Herein, we report the first synthesis of bradyrhizose. The scalable synthesis requires 26 steps in a high overall yield of 9%, with the inositol scaffold being constructed effectively via a Ferrier II rearrangement from a fully functionalized C2 and C4 branched pyranose derivative.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/607086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact