We establish the validity of a quantitative isoperimetric inequality in higher codimension. To be precise we show for any closed (n-1)-dimensional manifold Γ in R^{n+k} that the quantitative isoperimetric inequality D(Γ)≥ C_1 d^2(Γ) holds true. Here D(Γ) stands for the isoperimetric deficit of Γ, i.e., the deviation in measure of Γ being a round sphere. Further, d(Γ ) denotes a natural generalization to higher codimension of the Fraenkel asymmetry index of Γ.

A sharp quantitative isoperimetric inequality in higher codimension / V., Bögelein; F., Duzaar; Fusco, Nicola. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1720-0768. - 26:(2015), pp. 309-362. [10.4171/RLM/709]

A sharp quantitative isoperimetric inequality in higher codimension

FUSCO, NICOLA
2015

Abstract

We establish the validity of a quantitative isoperimetric inequality in higher codimension. To be precise we show for any closed (n-1)-dimensional manifold Γ in R^{n+k} that the quantitative isoperimetric inequality D(Γ)≥ C_1 d^2(Γ) holds true. Here D(Γ) stands for the isoperimetric deficit of Γ, i.e., the deviation in measure of Γ being a round sphere. Further, d(Γ ) denotes a natural generalization to higher codimension of the Fraenkel asymmetry index of Γ.
2015
A sharp quantitative isoperimetric inequality in higher codimension / V., Bögelein; F., Duzaar; Fusco, Nicola. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1720-0768. - 26:(2015), pp. 309-362. [10.4171/RLM/709]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/602220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact