Nitroxyl (HNO), the 1-electron reduction product of nitric oxide, improves myocardial contraction in normal and failing hearts. Here we test whether the HNO donor Angeli's salt (AS) will change myocyte action potential (AP) waveform by altering the L-type Ca2+ current (ICa) and contrast the contractile effects of HNO with that of the hydroxyl radical (.OH) and nitrite (NO2-), two potential breakdown products of AS. We confirmed the positive effect of AS/HNO on basal cardiomyocyte function, as opposed to the detrimental effect of .OH and the negligible effect of NO2-. Upon examination of the myocyte AP, we observed no change in resting membrane potential or AP duration to 20 per cent repolarization with AS/HNO, whereas AP duration to 90 per cent repolarization was slightly prolonged. However, perfusion with AS/HNO did not elicit a change in basal ICa, but did hasten ICa inactivation. Upon further examination of the SR, the AS/HNO-induced increase in cardiomyocyte Ca2+ transients was abolished with inhibition of SR Ca2+-cycling. Therefore, the HNO-induced increase in Ca2+ transients results exclusively from changes in SR Ca2+-cycling, and not from ICa.

Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling / Kohr Mark, J; Kaludercic, Nina; Tocchetti, CARLO GABRIELE; Dong Gao, Wei; Kass David, A; Janssen Paul, M. L.; Paolocci, Nazareno; Ziolo Mark, T.. - In: FRONTIERS IN BIOSCIENCE. - ISSN 1945-0494. - 2:(2010), pp. 614-626. [10.2741/e118]

Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling.

TOCCHETTI, CARLO GABRIELE;
2010

Abstract

Nitroxyl (HNO), the 1-electron reduction product of nitric oxide, improves myocardial contraction in normal and failing hearts. Here we test whether the HNO donor Angeli's salt (AS) will change myocyte action potential (AP) waveform by altering the L-type Ca2+ current (ICa) and contrast the contractile effects of HNO with that of the hydroxyl radical (.OH) and nitrite (NO2-), two potential breakdown products of AS. We confirmed the positive effect of AS/HNO on basal cardiomyocyte function, as opposed to the detrimental effect of .OH and the negligible effect of NO2-. Upon examination of the myocyte AP, we observed no change in resting membrane potential or AP duration to 20 per cent repolarization with AS/HNO, whereas AP duration to 90 per cent repolarization was slightly prolonged. However, perfusion with AS/HNO did not elicit a change in basal ICa, but did hasten ICa inactivation. Upon further examination of the SR, the AS/HNO-induced increase in cardiomyocyte Ca2+ transients was abolished with inhibition of SR Ca2+-cycling. Therefore, the HNO-induced increase in Ca2+ transients results exclusively from changes in SR Ca2+-cycling, and not from ICa.
2010
Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling / Kohr Mark, J; Kaludercic, Nina; Tocchetti, CARLO GABRIELE; Dong Gao, Wei; Kass David, A; Janssen Paul, M. L.; Paolocci, Nazareno; Ziolo Mark, T.. - In: FRONTIERS IN BIOSCIENCE. - ISSN 1945-0494. - 2:(2010), pp. 614-626. [10.2741/e118]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/599266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact