The global climate is predicted to change in the next century; for the Mediterranean Basin, an increase in air temperature more than 4°C and a higher frequency of extreme climatic events such as drought and heat waves are expected. In this work, the response of Cistus salvifolius L. to the rise in winter temperature has been studied. Plants acclimated to winter conditions [outdoor (OUT)] were moved into a greenhouse [indoor (IND)] at higher temperature and eco-physiological behaviour was analysed on leaves after 15 days from plant transferring (IND15d) and on leaves developed IND. IND leaves were characterized by reduced thickness, higher specific leaf area, higher CO2 mesophyll conductance and photosynthetic rate, and lower respiratory rate than leaves grown OUT upon current winter conditions. In IND15d leaves, no improvement of photochemical activity was found. When IND leaves were subjected to a rapid increase in air temperature, the CO2 fixation was not limited indicating a high thermotolerance of photosynthetic machinery. The results for IND leaves indicate the occurrence of a strategy that merging changes in leaf structure as well as in photosynthetic regulation allow C. salvifolius to maintain an elevated carbon gain in response to temperature increase.

Morphological and physiological modifications of Cistus salvifolius L. winter leaves to rise of winter temperatures / Vitale, Luca; V., Magliulo; Arena, Carmen. - In: PLANT BIOSYSTEMS. - ISSN 1126-3504. - 148:6(2014), pp. 1093-1101. [10.1080/11263504.2014.980365]

Morphological and physiological modifications of Cistus salvifolius L. winter leaves to rise of winter temperatures

ARENA, CARMEN
Ultimo
Writing – Review & Editing
2014

Abstract

The global climate is predicted to change in the next century; for the Mediterranean Basin, an increase in air temperature more than 4°C and a higher frequency of extreme climatic events such as drought and heat waves are expected. In this work, the response of Cistus salvifolius L. to the rise in winter temperature has been studied. Plants acclimated to winter conditions [outdoor (OUT)] were moved into a greenhouse [indoor (IND)] at higher temperature and eco-physiological behaviour was analysed on leaves after 15 days from plant transferring (IND15d) and on leaves developed IND. IND leaves were characterized by reduced thickness, higher specific leaf area, higher CO2 mesophyll conductance and photosynthetic rate, and lower respiratory rate than leaves grown OUT upon current winter conditions. In IND15d leaves, no improvement of photochemical activity was found. When IND leaves were subjected to a rapid increase in air temperature, the CO2 fixation was not limited indicating a high thermotolerance of photosynthetic machinery. The results for IND leaves indicate the occurrence of a strategy that merging changes in leaf structure as well as in photosynthetic regulation allow C. salvifolius to maintain an elevated carbon gain in response to temperature increase.
2014
Morphological and physiological modifications of Cistus salvifolius L. winter leaves to rise of winter temperatures / Vitale, Luca; V., Magliulo; Arena, Carmen. - In: PLANT BIOSYSTEMS. - ISSN 1126-3504. - 148:6(2014), pp. 1093-1101. [10.1080/11263504.2014.980365]
File in questo prodotto:
File Dimensione Formato  
2014_Vitale et al_ Plant Biosystems.pdf

solo utenti autorizzati

Descrizione: Articolo in rivista
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 713.12 kB
Formato Adobe PDF
713.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/593614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact