We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell’s equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers’ boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

Two-dimensional fast marching for geometrical optics / Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Salvatore, Savarese. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 22:22(2014), pp. 26680-26695. [10.1364/OE.22.026680]

Two-dimensional fast marching for geometrical optics

CAPOZZOLI, AMEDEO;CURCIO, CLAUDIO;LISENO, ANGELO;
2014

Abstract

We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell’s equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers’ boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.
2014
Two-dimensional fast marching for geometrical optics / Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Salvatore, Savarese. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 22:22(2014), pp. 26680-26695. [10.1364/OE.22.026680]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/588992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact