This study is an extension of former works by the present authors, in which the influence of the chemical models by Gupta and by Park was evaluated on thermo-fluid-dynamic parameters in the flow field, including transport coefficients, related characteristic numbers and heat flux on two current capsules (EXPERT and Orion) during the high altitude re-entry path. The results verified that the models, even computing different air compositions in the flow field, compute only slight different compositions on the capsule surface, therefore the difference in the heat flux is not very relevant. In the above mentioned studies, ionization was neglected because the velocities of the capsules (about 5000 m/s for EXPERT and about 7600 m/s for Orion) were not high enough to activate meaningful ionization. The aim of the present work is to evaluate the incidence of ionization, linked to the chemical models by Gupta and by Park, on both heat flux and thermo fluid-dynamic parameters. The present computer tests were carried out by a direct simulation Monte Carlo code (DS2V) in the velocity interval 7600-12000 m/s, considering only the Orion capsule at an altitude of 85 km. The present results verified what already found namely when ionization is not considered, the chemical models compute only a slight different gas composition in the core of the shock wave and practically the same composition on the surface therefore the same heat flux. On the opposite, the results verified that when ionization is considered, the chemical models compute different compositions in the whole shock layer and on the surface therefore different heat flux. The analysis of the results relies on a qualitative and a quantitative evaluation of the effects of ionization on both chemical models. The main result of the study is that when ionization is taken into account, the Park model is more reactive than the Gupta model; consequently, the heat flux computed by Park is lower than the one computed by Gupta.

Influence of Ionization on the Gupta and on the Park Chemical Models / Morsa, Luigi; Zuppardi, Gennaro. - 1628:(2014), pp. 1210-1220. (Intervento presentato al convegno 29th Rarefied Gas Dynamics tenutosi a Xi'an (China) nel July 13-18, 2014) [10.1063/1.4902730].

Influence of Ionization on the Gupta and on the Park Chemical Models

MORSA, LUIGI;ZUPPARDI, GENNARO
2014

Abstract

This study is an extension of former works by the present authors, in which the influence of the chemical models by Gupta and by Park was evaluated on thermo-fluid-dynamic parameters in the flow field, including transport coefficients, related characteristic numbers and heat flux on two current capsules (EXPERT and Orion) during the high altitude re-entry path. The results verified that the models, even computing different air compositions in the flow field, compute only slight different compositions on the capsule surface, therefore the difference in the heat flux is not very relevant. In the above mentioned studies, ionization was neglected because the velocities of the capsules (about 5000 m/s for EXPERT and about 7600 m/s for Orion) were not high enough to activate meaningful ionization. The aim of the present work is to evaluate the incidence of ionization, linked to the chemical models by Gupta and by Park, on both heat flux and thermo fluid-dynamic parameters. The present computer tests were carried out by a direct simulation Monte Carlo code (DS2V) in the velocity interval 7600-12000 m/s, considering only the Orion capsule at an altitude of 85 km. The present results verified what already found namely when ionization is not considered, the chemical models compute only a slight different gas composition in the core of the shock wave and practically the same composition on the surface therefore the same heat flux. On the opposite, the results verified that when ionization is considered, the chemical models compute different compositions in the whole shock layer and on the surface therefore different heat flux. The analysis of the results relies on a qualitative and a quantitative evaluation of the effects of ionization on both chemical models. The main result of the study is that when ionization is taken into account, the Park model is more reactive than the Gupta model; consequently, the heat flux computed by Park is lower than the one computed by Gupta.
2014
Influence of Ionization on the Gupta and on the Park Chemical Models / Morsa, Luigi; Zuppardi, Gennaro. - 1628:(2014), pp. 1210-1220. (Intervento presentato al convegno 29th Rarefied Gas Dynamics tenutosi a Xi'an (China) nel July 13-18, 2014) [10.1063/1.4902730].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/582638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact