Background: The O17(p,γ)F18 reaction affects the production of key isotopes (e.g., F18 and O18) in the explosive hydrogen burning that powers classical novae. Under these explosive conditions, the reaction rate is dominated by contributions from a narrow resonance at Ec.m.=183keV and by the combined contributions of direct capture and low-energy tails of broad resonances. At present, the astrophysical reaction rate is not well constrained because of the lack of data in the energy region appropriate to classical novae. Purpose: This study aims at the measurement of the O17(p,γ)F18 reaction cross section in order to determine its reaction rate in the temperature region appropriate to explosive hydrogen burning in novae. Method: The O17(p,γ)F18 reaction cross section was measured using both the prompt detection of the emitted γ rays and an activation technique. Measurements were carried out at the Laboratory for Underground Nuclear Astrophysics (Gran Sasso, Italy) where the strongly reduced cosmic-ray-induced background allows for improved sensitivity compared to previous studies. Results: The O17(p,γ)F18 reaction cross section was measured in the range Ec.m.=160 to 370keV. The strength of the Ec.m.=183keV resonance, ωγ=1. 67±0.12μeV, was determined with unprecedented precision. The total S factor was obtained through a combined fit of prompt γ-ray and activation results. An overall global fit including other existing data sets was also carried out and a recommended astrophysical reaction rate is presented. Conclusions: The reaction rate uncertainty attained in this work is now below the required precision for nova models. We verified, following a full set of hydrodynamic nova models, that the abundances of oxygen and fluorine isotopes obtained with the present reaction rate are determined with 10% precision and put firmer constraints on observational signatures of novae events.

Underground study of the O17(p,g)F18 reaction relevant for explosive hydrogen burning / DI LEVA, Antonino; D. A., Scott; A., Caciolli; A., Formicola; F., Strieder; M., Aliotta; M., Anders; D., Bemmerer; C., Broggini; P., Corvisiero; Z., Elekes; F?l?p, Z. s.; G., Gervino; A., Guglielmetti; C., Gustavino; Gy?rky, G. y.; Imbriani, Gianluca; J., Jos?; M., Junker; M., Laubenstein; R., Menegazzo; E., Napolitani; P., Prati; V., Rigato; Roca, Vincenzo; E., Somorjai; C., Salvo; O., Straniero; T., Sz?cs; F., Terrasi; D., Trezzi. - In: PHYSICAL REVIEW. C, NUCLEAR PHYSICS. - ISSN 0556-2813. - 89:(2014), pp. 1-15. [10.1103/PhysRevC.89.015803]

Underground study of the O17(p,g)F18 reaction relevant for explosive hydrogen burning

DI LEVA, ANTONINO;IMBRIANI, GIANLUCA;ROCA, VINCENZO;
2014

Abstract

Background: The O17(p,γ)F18 reaction affects the production of key isotopes (e.g., F18 and O18) in the explosive hydrogen burning that powers classical novae. Under these explosive conditions, the reaction rate is dominated by contributions from a narrow resonance at Ec.m.=183keV and by the combined contributions of direct capture and low-energy tails of broad resonances. At present, the astrophysical reaction rate is not well constrained because of the lack of data in the energy region appropriate to classical novae. Purpose: This study aims at the measurement of the O17(p,γ)F18 reaction cross section in order to determine its reaction rate in the temperature region appropriate to explosive hydrogen burning in novae. Method: The O17(p,γ)F18 reaction cross section was measured using both the prompt detection of the emitted γ rays and an activation technique. Measurements were carried out at the Laboratory for Underground Nuclear Astrophysics (Gran Sasso, Italy) where the strongly reduced cosmic-ray-induced background allows for improved sensitivity compared to previous studies. Results: The O17(p,γ)F18 reaction cross section was measured in the range Ec.m.=160 to 370keV. The strength of the Ec.m.=183keV resonance, ωγ=1. 67±0.12μeV, was determined with unprecedented precision. The total S factor was obtained through a combined fit of prompt γ-ray and activation results. An overall global fit including other existing data sets was also carried out and a recommended astrophysical reaction rate is presented. Conclusions: The reaction rate uncertainty attained in this work is now below the required precision for nova models. We verified, following a full set of hydrodynamic nova models, that the abundances of oxygen and fluorine isotopes obtained with the present reaction rate are determined with 10% precision and put firmer constraints on observational signatures of novae events.
2014
Underground study of the O17(p,g)F18 reaction relevant for explosive hydrogen burning / DI LEVA, Antonino; D. A., Scott; A., Caciolli; A., Formicola; F., Strieder; M., Aliotta; M., Anders; D., Bemmerer; C., Broggini; P., Corvisiero; Z., Elekes; F?l?p, Z. s.; G., Gervino; A., Guglielmetti; C., Gustavino; Gy?rky, G. y.; Imbriani, Gianluca; J., Jos?; M., Junker; M., Laubenstein; R., Menegazzo; E., Napolitani; P., Prati; V., Rigato; Roca, Vincenzo; E., Somorjai; C., Salvo; O., Straniero; T., Sz?cs; F., Terrasi; D., Trezzi. - In: PHYSICAL REVIEW. C, NUCLEAR PHYSICS. - ISSN 0556-2813. - 89:(2014), pp. 1-15. [10.1103/PhysRevC.89.015803]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/574907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 47
social impact