The Large Magellanic Cloud (LMC), at only 50 kpc away from us and known to be dark matter dominated, is clearly an interesting place where to search for dark matter annihilation signals. In this paper, we estimate the synchrotron emission due to weakly interacting massive particle (WIMP) annihilation in the halo of the LMC at two radio frequencies, 1.4 and 4.8 GHz, and compare it to the observed emission, in order to impose constraints in the WIMP mass versus annihilation cross-section plane. We use available Faraday rotation data from background sources to estimate the magnitude of the magnetic field in different regions of the LMC's disc, where we calculate the radio signal due to dark matter annihilation. We account for the e+e- energy losses due to synchrotron, inverse Compton scattering and bremsstrahlung, using the observed hydrogen and dust temperature distribution on the LMC to estimate their efficiency. The extensive use of observations, allied with conservative choices adopted in all the steps of the calculation, allows us to obtain very realistic constraints.

Radio emission from dark matter annihilation in the Large Magellanic Cloud / Beatriz B., Siffert; Angelo, Limone; Borriello, Enrico; Longo, Giuseppe; Miele, Gennaro. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 410:(2011), pp. 2463-2471. [10.1111/j.1365-2966.2010.17613.x]

Radio emission from dark matter annihilation in the Large Magellanic Cloud

BORRIELLO, ENRICO;LONGO, GIUSEPPE;MIELE, GENNARO
2011

Abstract

The Large Magellanic Cloud (LMC), at only 50 kpc away from us and known to be dark matter dominated, is clearly an interesting place where to search for dark matter annihilation signals. In this paper, we estimate the synchrotron emission due to weakly interacting massive particle (WIMP) annihilation in the halo of the LMC at two radio frequencies, 1.4 and 4.8 GHz, and compare it to the observed emission, in order to impose constraints in the WIMP mass versus annihilation cross-section plane. We use available Faraday rotation data from background sources to estimate the magnitude of the magnetic field in different regions of the LMC's disc, where we calculate the radio signal due to dark matter annihilation. We account for the e+e- energy losses due to synchrotron, inverse Compton scattering and bremsstrahlung, using the observed hydrogen and dust temperature distribution on the LMC to estimate their efficiency. The extensive use of observations, allied with conservative choices adopted in all the steps of the calculation, allows us to obtain very realistic constraints.
2011
Radio emission from dark matter annihilation in the Large Magellanic Cloud / Beatriz B., Siffert; Angelo, Limone; Borriello, Enrico; Longo, Giuseppe; Miele, Gennaro. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 410:(2011), pp. 2463-2471. [10.1111/j.1365-2966.2010.17613.x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/572378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact