This work deals with the Dakin-West synthesis, starting from the nucleoamino acid 1-thyminyl acetic acid, as well the NMR, ESI MS, and X-ray characterization of a heteroaromatic compound denominated by us T(2)CO, comprising two thymine moieties anchored to a 2-propanonic unit, the spectroscopic properties of which were studied by UV as a function of temperature and ionic strength. Preliminary binding-studies with molecules of biomedical interest such as nucleic acids and proteins, performed on samples containing T(2)CO, suggested that this molecule is able to interact very weakly with double-stranded RNA, whereas it does not seem to bind other nucleic acids or proteins. Moreover, by studies with fresh human serum we found that T(2)CO is resistant to enzymatic degradation till 24 h, whereas UV metal binding-studies, performed using solutions of copper (II) chloride dihydrate and nickel (II) chloride hexahydrate, revealed a certain ability of T(2)CO to bind copper (II) cation. Finally, by CD spectroscopy we investigated the influence of T(2)CO on the already described supramolecular networks based on L-serine-containing nucleopeptides. More particularly, we found that T(2)CO is able to increase the level of structuration of the non-covalent supramolecular assembly of the chiral nucleopeptides, which is a feature of remarkable interest for the development of innovative drug delivery tools.

Dakin-West reaction on 1-thyminyl acetic acid for the synthesis of 1,3-bis(1-thyminyl)-2-propanone, a heteroaromatic compound with nucleopeptide-binding properties / Giovanni N., Roviello; Roviello, Giuseppina; Musumeci, Domenica; Enrico M., Bucci; Carlo, Pedone. - In: AMINO ACIDS. - ISSN 0939-4451. - 43:4(2012), pp. 1615-1623. [10.1007/s00726-012-1237-7]

Dakin-West reaction on 1-thyminyl acetic acid for the synthesis of 1,3-bis(1-thyminyl)-2-propanone, a heteroaromatic compound with nucleopeptide-binding properties

ROVIELLO, GIUSEPPINA;MUSUMECI, DOMENICA;
2012

Abstract

This work deals with the Dakin-West synthesis, starting from the nucleoamino acid 1-thyminyl acetic acid, as well the NMR, ESI MS, and X-ray characterization of a heteroaromatic compound denominated by us T(2)CO, comprising two thymine moieties anchored to a 2-propanonic unit, the spectroscopic properties of which were studied by UV as a function of temperature and ionic strength. Preliminary binding-studies with molecules of biomedical interest such as nucleic acids and proteins, performed on samples containing T(2)CO, suggested that this molecule is able to interact very weakly with double-stranded RNA, whereas it does not seem to bind other nucleic acids or proteins. Moreover, by studies with fresh human serum we found that T(2)CO is resistant to enzymatic degradation till 24 h, whereas UV metal binding-studies, performed using solutions of copper (II) chloride dihydrate and nickel (II) chloride hexahydrate, revealed a certain ability of T(2)CO to bind copper (II) cation. Finally, by CD spectroscopy we investigated the influence of T(2)CO on the already described supramolecular networks based on L-serine-containing nucleopeptides. More particularly, we found that T(2)CO is able to increase the level of structuration of the non-covalent supramolecular assembly of the chiral nucleopeptides, which is a feature of remarkable interest for the development of innovative drug delivery tools.
2012
Dakin-West reaction on 1-thyminyl acetic acid for the synthesis of 1,3-bis(1-thyminyl)-2-propanone, a heteroaromatic compound with nucleopeptide-binding properties / Giovanni N., Roviello; Roviello, Giuseppina; Musumeci, Domenica; Enrico M., Bucci; Carlo, Pedone. - In: AMINO ACIDS. - ISSN 0939-4451. - 43:4(2012), pp. 1615-1623. [10.1007/s00726-012-1237-7]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/565447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 34
social impact