Explosion of oxygen-enriched fuel mixtures can exhibit severe behavior because of the rapid evaporation of the water produced by the combustion reaction. The phenomenon underlying this behavior has been recently named combustion-induced rapid-phase transition (cRPT). If the cRPT phenomenon is not invoked, the observed behavior cannot be explained by the classical theory for deflagration to detonation transition or pre-compression effects. In this work, the cRPT phenomenon was analyzed by varying either the oxygen enrichment or CO 2 content in three closed vessels with different internal surface area/volume ratios. Characteristic times for condensation, radiation, and reaction have further demonstrated the opportunity to predict either the likelihood or the trend of the intensity of the observed over-adiabatic maximum pressures as functions of the surface/volume ratio. © 2012 American Chemical Society.

Combustion-induced rapid-phase transition (cRPT) in CH 4/CO 2/O 2-enriched mixtures / DI BENEDETTO, Almerinda; F., Cammarota; V., Di Sarli; E., Salzano; G., Russo. - In: ENERGY & FUELS. - ISSN 0887-0624. - 26:(2012), pp. 4799-4803. [10.1021/ef300713s]

Combustion-induced rapid-phase transition (cRPT) in CH 4/CO 2/O 2-enriched mixtures

DI BENEDETTO, ALMERINDA;
2012

Abstract

Explosion of oxygen-enriched fuel mixtures can exhibit severe behavior because of the rapid evaporation of the water produced by the combustion reaction. The phenomenon underlying this behavior has been recently named combustion-induced rapid-phase transition (cRPT). If the cRPT phenomenon is not invoked, the observed behavior cannot be explained by the classical theory for deflagration to detonation transition or pre-compression effects. In this work, the cRPT phenomenon was analyzed by varying either the oxygen enrichment or CO 2 content in three closed vessels with different internal surface area/volume ratios. Characteristic times for condensation, radiation, and reaction have further demonstrated the opportunity to predict either the likelihood or the trend of the intensity of the observed over-adiabatic maximum pressures as functions of the surface/volume ratio. © 2012 American Chemical Society.
2012
Combustion-induced rapid-phase transition (cRPT) in CH 4/CO 2/O 2-enriched mixtures / DI BENEDETTO, Almerinda; F., Cammarota; V., Di Sarli; E., Salzano; G., Russo. - In: ENERGY & FUELS. - ISSN 0887-0624. - 26:(2012), pp. 4799-4803. [10.1021/ef300713s]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/505255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact