The relationship between heavy-ion-induced cell cycle delay and the time-course of aberrations in first-cycle metaphases or prematurely condensed G(2)-cells (G(2)-PCC) was investigated. Lymphocytes of the same donor were irradiated with X-rays or various charged particles (carbon, iron, xenon, and chromium) covering an LET range of 2-3,160 keV/μm. Chromosome aberrations were measured in samples collected at 48, 60, 72, and 84 h postirradiation. Linear-quadratic functions were fitted to the data, and the fit parameters α and β were determined. At any sampling time, α values derived from G(2)-cells were higher than those from metaphases. The α value derived from metaphase analysis at 48 h increased with LET, reached a maximum around 155 keV/μm, and decreased with a further rise in LET. At the later time-points, higher α values were estimated for particles with LET > 30 keV/μm. Estimates of α values from G(2)-cells showed a similar LET dependence, yet the time-dependent increase was less pronounced. Altogether, our data demonstrate that heavily damaged lymphocytes suffer a prolonged G(2)-arrest that is clearly LET dependent. For this very reason, the standard analysis of aberrations in metaphase cells 48 h postirradiation will considerably underestimate the effectiveness of high-LET radiation. Scoring of aberrations in G(2)-PCC at 48 h as suggested by several authors will result in higher aberration yields. However, when particles with a very high-LET value (LET > 150 keV/μm) are applied, still a fraction of multiple damaged cells escape detection by G(2)-analysis 48 h postirradiation.

Chromosome aberration measurements in mitotic and G2-PCC lymphocytes at the standard sampling time of 48 h underestimate the effectiveness of high-LET particles / R., Lee; E., Nasonova; C., Hartel; Durante, Marco; S., Ritter. - In: RADIATION AND ENVIRONMENTAL BIOPHYSICS. - ISSN 0301-634X. - STAMPA. - 50:(2011), pp. 371-381. [10.1007/s00411-011-0360-2]

Chromosome aberration measurements in mitotic and G2-PCC lymphocytes at the standard sampling time of 48 h underestimate the effectiveness of high-LET particles.

DURANTE, MARCO;
2011

Abstract

The relationship between heavy-ion-induced cell cycle delay and the time-course of aberrations in first-cycle metaphases or prematurely condensed G(2)-cells (G(2)-PCC) was investigated. Lymphocytes of the same donor were irradiated with X-rays or various charged particles (carbon, iron, xenon, and chromium) covering an LET range of 2-3,160 keV/μm. Chromosome aberrations were measured in samples collected at 48, 60, 72, and 84 h postirradiation. Linear-quadratic functions were fitted to the data, and the fit parameters α and β were determined. At any sampling time, α values derived from G(2)-cells were higher than those from metaphases. The α value derived from metaphase analysis at 48 h increased with LET, reached a maximum around 155 keV/μm, and decreased with a further rise in LET. At the later time-points, higher α values were estimated for particles with LET > 30 keV/μm. Estimates of α values from G(2)-cells showed a similar LET dependence, yet the time-dependent increase was less pronounced. Altogether, our data demonstrate that heavily damaged lymphocytes suffer a prolonged G(2)-arrest that is clearly LET dependent. For this very reason, the standard analysis of aberrations in metaphase cells 48 h postirradiation will considerably underestimate the effectiveness of high-LET radiation. Scoring of aberrations in G(2)-PCC at 48 h as suggested by several authors will result in higher aberration yields. However, when particles with a very high-LET value (LET > 150 keV/μm) are applied, still a fraction of multiple damaged cells escape detection by G(2)-analysis 48 h postirradiation.
2011
Chromosome aberration measurements in mitotic and G2-PCC lymphocytes at the standard sampling time of 48 h underestimate the effectiveness of high-LET particles / R., Lee; E., Nasonova; C., Hartel; Durante, Marco; S., Ritter. - In: RADIATION AND ENVIRONMENTAL BIOPHYSICS. - ISSN 0301-634X. - STAMPA. - 50:(2011), pp. 371-381. [10.1007/s00411-011-0360-2]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/500385
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact