We report on the occurrence of multiple hopping and retrapping of a Brownian particle in a tilted washboard potential. The escape dynamic has been studied experimentally by measuring the switching current distributions as a function of temperature in a moderately damped NbN/MgO/NbN Josephson junction. At low temperatures the second moment of the distribution increases in agreement with calculations based on Kramers thermal activation regime. After a turnover temperature T*, the shape of the distributions starts changing and width decreases with temperature. We analyze the data through fit of the switching probability and Monte Carlo simulations and we find a good agreement with a model based on a multiple retrapping process.
Thermal hopping and retrapping of a Brownian particle in the tilted periodic potential of a NbN/MgO/NbN Josephson junction
MASSAROTTI, DAVIDE;STORNAIUOLO, DANIELA;G. Papari;PEPE, GIOVANNI PIERO;Tafuri, Francesco
2011
Abstract
We report on the occurrence of multiple hopping and retrapping of a Brownian particle in a tilted washboard potential. The escape dynamic has been studied experimentally by measuring the switching current distributions as a function of temperature in a moderately damped NbN/MgO/NbN Josephson junction. At low temperatures the second moment of the distribution increases in agreement with calculations based on Kramers thermal activation regime. After a turnover temperature T*, the shape of the distributions starts changing and width decreases with temperature. We analyze the data through fit of the switching probability and Monte Carlo simulations and we find a good agreement with a model based on a multiple retrapping process.File | Dimensione | Formato | |
---|---|---|---|
2011_NbN_PRB.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.