Oxygen binding and spectroscopic properties of the homodimeric myoglobin (Mb) from the prosobranchia sea snail Nassa mutabilis have been investigated. Oxygen equilibrium curves are pH-independent and cooperative with P50 = 5 +/- 1 mmHg and n approximately 1.5. Circular dichroism spectra of the oxygenated and deoxygenated form of N. mutabilis Mb are superimposable between 190 and 250 nm, suggesting a mechanism for cooperative ligand binding that does not involve changes in the alpha-helical content of the whole protein. The oxygen dissociation process is biphasic and pH-dependent, with different pKa values (=6.7 +/- 0.2 and 8.5 +/- 0.3) for the two phases. Moreover, the activation energy is essentially the same for both oxygen dissociation processes (Ea = 56.4 +/- 2.1 kJ/mol for the fast phase, and Ea = 53.8 +/- 1.9 kJ/mol for the slow phase), indicating that the rate difference for O2 dissociation between the diliganded and the monoliganded species is mostly dependent on a variation of the activation entropy. Ferrous nitrosylated N. mutabilis Mb shows, at alkaline and neutral pH, axial and rhombic X-band EPR signals, respectively, which display below pH 6 a three-hyperfine pattern typical of five-coordination. The results presented here suggest that in N.mutabilis Mb the kinetic control of cooperativity operates through a mechanism never observed before in other hemoproteins, which requires a ligand-linked large enhancement for the value of the oxygen association process in a molecule not undergoing changes in quaternary structure.

Cooperative Mechanism in the Homodimeric Myoglobin from Nassa mutabilis†

DEL GAUDIO, ROSANNA;PISCOPO, MARINA;GERACI, GIUSEPPE
1998

Abstract

Oxygen binding and spectroscopic properties of the homodimeric myoglobin (Mb) from the prosobranchia sea snail Nassa mutabilis have been investigated. Oxygen equilibrium curves are pH-independent and cooperative with P50 = 5 +/- 1 mmHg and n approximately 1.5. Circular dichroism spectra of the oxygenated and deoxygenated form of N. mutabilis Mb are superimposable between 190 and 250 nm, suggesting a mechanism for cooperative ligand binding that does not involve changes in the alpha-helical content of the whole protein. The oxygen dissociation process is biphasic and pH-dependent, with different pKa values (=6.7 +/- 0.2 and 8.5 +/- 0.3) for the two phases. Moreover, the activation energy is essentially the same for both oxygen dissociation processes (Ea = 56.4 +/- 2.1 kJ/mol for the fast phase, and Ea = 53.8 +/- 1.9 kJ/mol for the slow phase), indicating that the rate difference for O2 dissociation between the diliganded and the monoliganded species is mostly dependent on a variation of the activation entropy. Ferrous nitrosylated N. mutabilis Mb shows, at alkaline and neutral pH, axial and rhombic X-band EPR signals, respectively, which display below pH 6 a three-hyperfine pattern typical of five-coordination. The results presented here suggest that in N.mutabilis Mb the kinetic control of cooperativity operates through a mechanism never observed before in other hemoproteins, which requires a ligand-linked large enhancement for the value of the oxygen association process in a molecule not undergoing changes in quaternary structure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/475582
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact