We studied the prompt dipole γ-ray emission, associated with entrance channel charge asymmetry effects, as a function of incident energy in the 32,36S + 100,96Mo (Elab=6 MeV/nucleon) and 36,40Ar + 96,92Zr fusion reactions (Elab= 16 and 15 MeV/nucleon, respectively). With the above reaction pairs the 132Ce compound nucleus was formed, from entrance channels having different charge asymmetries, at an excitation energy of 117 and 304 MeV with identical spin distribution. By studying the differential γ-ray multiplicity spectra related to the above fusion reactions, it was shown that at the higher compound nucleus excitation energy the Giant Dipole Resonance γ-ray intensity increases by ~14% for the more charge asymmetric system while at the lower one no difference between the data was seen within the experimental uncertainties. Calculations based on a collective bremsstrahlung analysis of the reaction dynamics are presented and compared with the experimental findings.

Evolution of the prompt dipole γ-ray emission with incident energy in fusion reactions

INGLIMA, GIOVANNI;DE ROSA, ANTONIO;LA COMMARA, MARCO;SANDOLI, MARIO;VARDACI, EMANUELE;
2005

Abstract

We studied the prompt dipole γ-ray emission, associated with entrance channel charge asymmetry effects, as a function of incident energy in the 32,36S + 100,96Mo (Elab=6 MeV/nucleon) and 36,40Ar + 96,92Zr fusion reactions (Elab= 16 and 15 MeV/nucleon, respectively). With the above reaction pairs the 132Ce compound nucleus was formed, from entrance channels having different charge asymmetries, at an excitation energy of 117 and 304 MeV with identical spin distribution. By studying the differential γ-ray multiplicity spectra related to the above fusion reactions, it was shown that at the higher compound nucleus excitation energy the Giant Dipole Resonance γ-ray intensity increases by ~14% for the more charge asymmetric system while at the lower one no difference between the data was seen within the experimental uncertainties. Calculations based on a collective bremsstrahlung analysis of the reaction dynamics are presented and compared with the experimental findings.
9789812701565
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/473365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 0
social impact