A fusion‐evaporation experiment has been performed with a SPIRAL 76Kr radioactive beam in order to study the deformation of rare‐earth nuclei near the proton drip‐line. The experimental setup consisted in the EXOGAM γ‐array, coupled to the light‐charged particles (LCP) DIAMANT detector and to the VAMOS heavy‐ion spectrometer. The difficulties inherent to such measurements are enlightened. The coupling between EXOGAM and DIAMANT has been used to decrease the huge background caused by the radioactivity of the beam. It further permits assigning new γ‐ray transitions to specific residual nuclei. A γ‐ray belonging to the 130Pm level scheme has thus been observed for the first time.

γ-ray Spectroscopy of Proton Drip-Line Nuclei in the A ~ 130 Region using SPIRAL beams

LA RANA, GIOVANNI;MORO, RENATA EMILIA MARIA;VARDACI, EMANUELE;
2008

Abstract

A fusion‐evaporation experiment has been performed with a SPIRAL 76Kr radioactive beam in order to study the deformation of rare‐earth nuclei near the proton drip‐line. The experimental setup consisted in the EXOGAM γ‐array, coupled to the light‐charged particles (LCP) DIAMANT detector and to the VAMOS heavy‐ion spectrometer. The difficulties inherent to such measurements are enlightened. The coupling between EXOGAM and DIAMANT has been used to decrease the huge background caused by the radioactivity of the beam. It further permits assigning new γ‐ray transitions to specific residual nuclei. A γ‐ray belonging to the 130Pm level scheme has thus been observed for the first time.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/466594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact