One of the main effects of supergene alteration of ore-bearing hydrothermal dolomite in areas surrounding secondary zinc orebodies (Calamine-type nonsulfides) in southwestern Sardinia (Italy) is the formation of a broad halo of Zn dolomite. The characteristics of supergene Zn dolomite have been investigated using scanning electron microscopy and qualitative energy-dispersive X-ray spectroscopy, thermodifferential analysis, and stable isotope geochemistry. The supergene Zn dolomite is characterized by variable amounts of Zn, and low contents of Pb and Cd in the crystal lattice. It is generally depleted in Fe and Mn relative to precursor hydrothermal dolomite (Dolomia Geodica), which occurs in two phases (stoichiometric dolomite followed by Fe-Mn-Zn-rich dolomite), well distinct in geochemistry. Mg-rich smithsonite is commonly associated to Zn dolomite. Characterization of Zn-bearing dolomite using differential thermal analysis shows a drop in temperature of the first endothermic reaction of dolomite decomposition with increasing Zn contents in dolomite. The supergene Zn dolomites have higher δ18O but lower δ13C values than hydrothermal dolomite. In comparison with smithsonite-hydrozincite, the supergene Zn dolomites have higher δ18O, but comparable δ13C values. Formation of Zn dolomite from meteoric waters is indicated by low δ13C values, suggesting the influence of soil-gas CO2 in near-surface environments. The replacement of the dolomite host by supergene Zn dolomite is interpreted as part of a multistep process, starting with a progressive "zincitization" of the dolomite crystals, followed by a patchy dedolomitization s. s. and potentially concluded by the complete replacement of dolomite by smithsonite.

Zincian dolomite related to supergene alteration in the Iglesias mining district (SW Sardinia) / Boni, Maria; Mondillo, Nicola; Balassone, Giuseppina; M., Joachimski; Colella, Abner. - In: INTERNATIONAL JOURNAL OF EARTH SCIENCES. - ISSN 1437-3254. - 102:1(2013), pp. 61-71. [10.1007/s00531-012-0785-0]

Zincian dolomite related to supergene alteration in the Iglesias mining district (SW Sardinia)

BONI, MARIA;MONDILLO, NICOLA;BALASSONE, GIUSEPPINA;COLELLA, ABNER
2013

Abstract

One of the main effects of supergene alteration of ore-bearing hydrothermal dolomite in areas surrounding secondary zinc orebodies (Calamine-type nonsulfides) in southwestern Sardinia (Italy) is the formation of a broad halo of Zn dolomite. The characteristics of supergene Zn dolomite have been investigated using scanning electron microscopy and qualitative energy-dispersive X-ray spectroscopy, thermodifferential analysis, and stable isotope geochemistry. The supergene Zn dolomite is characterized by variable amounts of Zn, and low contents of Pb and Cd in the crystal lattice. It is generally depleted in Fe and Mn relative to precursor hydrothermal dolomite (Dolomia Geodica), which occurs in two phases (stoichiometric dolomite followed by Fe-Mn-Zn-rich dolomite), well distinct in geochemistry. Mg-rich smithsonite is commonly associated to Zn dolomite. Characterization of Zn-bearing dolomite using differential thermal analysis shows a drop in temperature of the first endothermic reaction of dolomite decomposition with increasing Zn contents in dolomite. The supergene Zn dolomites have higher δ18O but lower δ13C values than hydrothermal dolomite. In comparison with smithsonite-hydrozincite, the supergene Zn dolomites have higher δ18O, but comparable δ13C values. Formation of Zn dolomite from meteoric waters is indicated by low δ13C values, suggesting the influence of soil-gas CO2 in near-surface environments. The replacement of the dolomite host by supergene Zn dolomite is interpreted as part of a multistep process, starting with a progressive "zincitization" of the dolomite crystals, followed by a patchy dedolomitization s. s. and potentially concluded by the complete replacement of dolomite by smithsonite.
2013
Zincian dolomite related to supergene alteration in the Iglesias mining district (SW Sardinia) / Boni, Maria; Mondillo, Nicola; Balassone, Giuseppina; M., Joachimski; Colella, Abner. - In: INTERNATIONAL JOURNAL OF EARTH SCIENCES. - ISSN 1437-3254. - 102:1(2013), pp. 61-71. [10.1007/s00531-012-0785-0]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/452633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact