When particles are dispersed in viscoelastic rather than Newtonian media, the hydrodynamics will be changed entailing differences in suspension rheology. The disturbance velocity profiles and stress distributions around the particle will depend on the viscoelastic material functions. Even in inertialess flows, changes in particle rotation and migration will occur. The problem of the rotation of a single spherical particle in simple shear flow in viscoelastic fluids was recently studied to understand the effects of changes in the theological properties with both numerical simulations [D'Avino et al., J. Rheol. 52 (2008) 1331-1346] and experiments [Snijkers et al., J. Rheol. 53 (2009) 459-480]. In the simulations, different constitutive models were used to demonstrate the effects of different theological behavior. In the experiments, fluids with different constitutive properties were chosen. In both studies a slowing down of the rotation speed of the particles was found, when compared to the Newtonian case, as elasticity increases. Surprisingly, the extent of the slowing down of the rotation rate did not depend strongly on the details of the fluid rheology, but primarily on the Weissenberg number defined as the ratio between the first normal stress difference and the shear stress. In the present work, a quantitative comparison between the experimental measurements and novel simulation results is made by considering more realistic constitutive equations as compared to the model fluids used in previous numerical simulations [D'Avino et al., J. Rheol. 52(2008)1331-1346]. A multimode Giesekus model with Newtonian solvent as constitutive equation is fitted to the experimentally obtained linear and nonlinear fluid properties and used to simulate the rotation of a torque-free sphere in a range of Weissenberg numbers similar to those in the experiments. A good agreement between the experimental and numerical results is obtained. The local torque and pressure distributions on the particle surface calculated by simulations are shown.

Effect of viscoelasticity on the rotation of a sphere in shear flow / F., Snijkers; D'Avino, Gaetano; Maffettone, PIER LUCA; Greco, Francesco; M. A., Hulsen; J., Vermant. - In: JOURNAL OF NON-NEWTONIAN FLUID MECHANICS. - ISSN 0377-0257. - 166:7-8(2011), pp. 363-372. [10.1016/j.jnnfm.2011.01.004]

Effect of viscoelasticity on the rotation of a sphere in shear flow

D'AVINO, GAETANO;MAFFETTONE, PIER LUCA;GRECO, FRANCESCO;
2011

Abstract

When particles are dispersed in viscoelastic rather than Newtonian media, the hydrodynamics will be changed entailing differences in suspension rheology. The disturbance velocity profiles and stress distributions around the particle will depend on the viscoelastic material functions. Even in inertialess flows, changes in particle rotation and migration will occur. The problem of the rotation of a single spherical particle in simple shear flow in viscoelastic fluids was recently studied to understand the effects of changes in the theological properties with both numerical simulations [D'Avino et al., J. Rheol. 52 (2008) 1331-1346] and experiments [Snijkers et al., J. Rheol. 53 (2009) 459-480]. In the simulations, different constitutive models were used to demonstrate the effects of different theological behavior. In the experiments, fluids with different constitutive properties were chosen. In both studies a slowing down of the rotation speed of the particles was found, when compared to the Newtonian case, as elasticity increases. Surprisingly, the extent of the slowing down of the rotation rate did not depend strongly on the details of the fluid rheology, but primarily on the Weissenberg number defined as the ratio between the first normal stress difference and the shear stress. In the present work, a quantitative comparison between the experimental measurements and novel simulation results is made by considering more realistic constitutive equations as compared to the model fluids used in previous numerical simulations [D'Avino et al., J. Rheol. 52(2008)1331-1346]. A multimode Giesekus model with Newtonian solvent as constitutive equation is fitted to the experimentally obtained linear and nonlinear fluid properties and used to simulate the rotation of a torque-free sphere in a range of Weissenberg numbers similar to those in the experiments. A good agreement between the experimental and numerical results is obtained. The local torque and pressure distributions on the particle surface calculated by simulations are shown.
2011
Effect of viscoelasticity on the rotation of a sphere in shear flow / F., Snijkers; D'Avino, Gaetano; Maffettone, PIER LUCA; Greco, Francesco; M. A., Hulsen; J., Vermant. - In: JOURNAL OF NON-NEWTONIAN FLUID MECHANICS. - ISSN 0377-0257. - 166:7-8(2011), pp. 363-372. [10.1016/j.jnnfm.2011.01.004]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/452001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 57
social impact