Hepatocyte Growth Factor (HGF)/c-MET signaling has an emerging role in promoting cell proliferation, survival, migration, wound repair and branching in a variety of cell types. HGF plays a crucial role as a mediator of stromal–epithelial interactions in the normal prostate but the precise biological function of HGF/ c-Met interaction in the normal prostate and in prostate cancer is not clear. HGF has two naturally occurring splice variants and NK1, the smallest of these HGF variants, consists of the HGF amino terminus through the first kringle domain. We evaluated the intracellular signaling cascades and the morphological changes triggered by NK1 in human prostate epithelial cell line PNT1A which shows molecular and biochemical properties close to the normal prostate epithelium. We demonstrated that these cells express a functional c- MET, and cell exposure to NK1 induces the phosphorylation of tyrosines 1313/1349/1356 residues of c-MET which provide docking sites for signaling molecules. We observed an increased phosphorylation of ERK1/2, Akt, c-Src, p125FAK, SMAD2/3, and STAT3, down-regulation of the expression of epithelial cell–cell adhesion marker E-cadherin, and enhanced expression levels of mesenchymal markers vimentin, fibronectin, vinculin, α-actinin, and α-smooth muscle actin. This results in cell proliferation, in the appearance of a mesenchymal phenotype, in morphological changes resembling cell scattering and in wound healing. Our findings highlight the function of NK1 in non-tumorigenic human prostatic epithelial cells and provide a picture of the signaling pathways triggered by NK1 in a unique cell line.

Intracellular signaling cascades triggered by the NK1 fragment of hepatocyte growth factor in human prostate epithelial cell line PNT1A

PAVONE, LUIGI MICHELE;CATTANEO, FABIO;REA, SILVIANA;DE PASQUALE, VALERIA;SPINA, ANNA;MASTELLONE, VINCENZO;AMMENDOLA, ROSARIO
2011

Abstract

Hepatocyte Growth Factor (HGF)/c-MET signaling has an emerging role in promoting cell proliferation, survival, migration, wound repair and branching in a variety of cell types. HGF plays a crucial role as a mediator of stromal–epithelial interactions in the normal prostate but the precise biological function of HGF/ c-Met interaction in the normal prostate and in prostate cancer is not clear. HGF has two naturally occurring splice variants and NK1, the smallest of these HGF variants, consists of the HGF amino terminus through the first kringle domain. We evaluated the intracellular signaling cascades and the morphological changes triggered by NK1 in human prostate epithelial cell line PNT1A which shows molecular and biochemical properties close to the normal prostate epithelium. We demonstrated that these cells express a functional c- MET, and cell exposure to NK1 induces the phosphorylation of tyrosines 1313/1349/1356 residues of c-MET which provide docking sites for signaling molecules. We observed an increased phosphorylation of ERK1/2, Akt, c-Src, p125FAK, SMAD2/3, and STAT3, down-regulation of the expression of epithelial cell–cell adhesion marker E-cadherin, and enhanced expression levels of mesenchymal markers vimentin, fibronectin, vinculin, α-actinin, and α-smooth muscle actin. This results in cell proliferation, in the appearance of a mesenchymal phenotype, in morphological changes resembling cell scattering and in wound healing. Our findings highlight the function of NK1 in non-tumorigenic human prostatic epithelial cells and provide a picture of the signaling pathways triggered by NK1 in a unique cell line.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/403402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact