Two issues of the resistive wall mode (RWM) control code maturity are addressed: the inclusion of advanced mode damping physics beyond the ideal MHD description, and the possibility of taking into account the influence of 3D features of the conducting structures on the mode stability and control. Examples of formulations and computational results are given, using the MARS-F/K codes and the CarMa code. The MARS-K calculations for a DIII-D plasma shows that the fast ion contributions, which can give additional drift kinetic stabilization in the perturbative approach, also drive an extra unstable branch of mode in the self-consistent kinetic modelling. The CarMa modelling for the ITER steady state advanced plasmas shows about 20% reduction in the RWM growth rate by the volumetric blanket modules. The multi-mode analysis predicts a weak interaction between the n = 0 and the n = 1 RWMs, due to the 3D ITER walls. The CarMa code is also successfully applied to model the realistic feedback experiments in RFX.
Resistive wall mode control code maturity: progress and specific examples / Liu, Yueqiang; Chu, M. S.; Guo, W. F.; Villone, F.; Albanese, Raffaele; Ambrosino, Giuseppe; Baruzzo, M.; Bolzonella, T.; Chapman, I. T.; Garofalo, A. M.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.; Jackson, G. L.; La Haye, R. J.; Lanctot, M. J.; In, Y.; Marchiori, G.; Okabayashi, M.; Paccagnella, R.; Furno Palumbo, M.; Pironti, Alfredo; Reimerdes, H.; Rubinacci, Guglielmo; Soppelsa, A.; Strait, E. J.; Ventre, S.; Yadykin, D.. - In: PLASMA PHYSICS AND CONTROLLED FUSION. - ISSN 0741-3335. - STAMPA. - 52:(2010), pp. 1-19. [10.1088/0741-3335/52/10/104002]
Resistive wall mode control code maturity: progress and specific examples
F. Villone;ALBANESE, Raffaele;AMBROSINO, GIUSEPPE;PIRONTI, ALFREDO;RUBINACCI, GUGLIELMO;
2010
Abstract
Two issues of the resistive wall mode (RWM) control code maturity are addressed: the inclusion of advanced mode damping physics beyond the ideal MHD description, and the possibility of taking into account the influence of 3D features of the conducting structures on the mode stability and control. Examples of formulations and computational results are given, using the MARS-F/K codes and the CarMa code. The MARS-K calculations for a DIII-D plasma shows that the fast ion contributions, which can give additional drift kinetic stabilization in the perturbative approach, also drive an extra unstable branch of mode in the self-consistent kinetic modelling. The CarMa modelling for the ITER steady state advanced plasmas shows about 20% reduction in the RWM growth rate by the volumetric blanket modules. The multi-mode analysis predicts a weak interaction between the n = 0 and the n = 1 RWMs, due to the 3D ITER walls. The CarMa code is also successfully applied to model the realistic feedback experiments in RFX.File | Dimensione | Formato | |
---|---|---|---|
albanese1.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
488.42 kB
Formato
Adobe PDF
|
488.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.