Trajectories drawn in a common reference system by all the vehicles on a road are the ultimate empirical data to investigate traffic dynamics. The vast amount of such data made freely available by the Next Generation SIMulation (NGSIM) program is therefore opening up new horizons in studying traffic flow theory. Yet the quality of trajectory data and its impact on the reliability of related studies was a vastly underestimated problem in the traffic literature even before the availability of NGSIM data. The absence of established methods to assess data accuracy and even of a common understanding of the problem makes it hard to speak of reproducibility of experiments and objective comparison of results, in particular in a research field where the complexity of human behaviour is an intrinsic challenge to the scientific method. Therefore this paper intends to design quantitative methods to inspect trajectory data. To this aim first the structure of the error on point measurements and its propagation on the space travelled are investigated. Analytical evidence of the bias propagated in the vehicle trajectory functions and a related consistency requirement are given. Literature on estimation/filtering techniques is then reviewed in light of this requirement and a number of error statistics suitable to inspect trajectory data are proposed. The designed methodology, involving jerk analysis, consistency analysis and spectral analysis, is then applied to the complete set of NGSIM databases.

On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data

PUNZO, VINCENZO;
2011

Abstract

Trajectories drawn in a common reference system by all the vehicles on a road are the ultimate empirical data to investigate traffic dynamics. The vast amount of such data made freely available by the Next Generation SIMulation (NGSIM) program is therefore opening up new horizons in studying traffic flow theory. Yet the quality of trajectory data and its impact on the reliability of related studies was a vastly underestimated problem in the traffic literature even before the availability of NGSIM data. The absence of established methods to assess data accuracy and even of a common understanding of the problem makes it hard to speak of reproducibility of experiments and objective comparison of results, in particular in a research field where the complexity of human behaviour is an intrinsic challenge to the scientific method. Therefore this paper intends to design quantitative methods to inspect trajectory data. To this aim first the structure of the error on point measurements and its propagation on the space travelled are investigated. Analytical evidence of the bias propagated in the vehicle trajectory functions and a related consistency requirement are given. Literature on estimation/filtering techniques is then reviewed in light of this requirement and a number of error statistics suitable to inspect trajectory data are proposed. The designed methodology, involving jerk analysis, consistency analysis and spectral analysis, is then applied to the complete set of NGSIM databases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/382353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 232
  • ???jsp.display-item.citation.isi??? 198
social impact