In a previous paper, the dynamic behaviour of a Jeffcott rotor was studied in the presence of pure static unbalance and nonlinear elastic restoring forces. The present paper extends the analysis to a rigid rotor with an axial length such as to make the transverse moment of inertia greater than the axial one. As in the previous investigation, the elastic restoring forces are assumed to be nonlinear and the effects of couple unbalance are also included but, unlike the Jeffcott rotor, the system exhibits six degrees-of-freedom. The Lagrangian coordinates were fixed so as to coincide with the three coordinates of the centre of mass of the rotor and the three angular coordinates needed in order to express the rotor''s rotations with respect to a reference frame having its origin in the centre of mass. The precession motions of such a rotor turn out to be cylindrical at low angular speeds and exhibit a conical aspect when operating at higher speeds. The motion equations of the rotor were written with reference to a system that was subsequently adopted for the experimental analysis. The particular feature of this system was the use of a steel wire (piano wire) for the rotor shaft, suitably constrained and with the possibility of regulating the tension of the wire itself, in order to increase or reduce the nonlinear character of the system. The numerical analysis performed with integration of the motion equations made it possible to point out that chaotic solutions were manifested only when the tension in the wire was given the lowest values – i.e. when the system was strongly nonlinear – in the presence of considerable damping and rotor unbalance values that were so high as to lose any practical significance. Under conditions commonly shared by analogous real systems characterised by poor damping, where the contribution to nonlinearity is almost entirely due to elastic restoring forces, the analysis pointed out that precession motions may be manifested with a periodic character, whether synchronous or not, or a quasi-periodic character, but in no case is the solution chaotic.

Dynamics of a rigid unbalanced rotor with nonlinear elastic restoring forces. Part I: theoretical analysis / Guido, ANGELO RAFFAELE; Adiletta, Giovanni. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. - STAMPA. - 19:4(1999), pp. 359-385. [10.1023/A:1008336006400]

Dynamics of a rigid unbalanced rotor with nonlinear elastic restoring forces. Part I: theoretical analysis

GUIDO, ANGELO RAFFAELE;ADILETTA, GIOVANNI
1999

Abstract

In a previous paper, the dynamic behaviour of a Jeffcott rotor was studied in the presence of pure static unbalance and nonlinear elastic restoring forces. The present paper extends the analysis to a rigid rotor with an axial length such as to make the transverse moment of inertia greater than the axial one. As in the previous investigation, the elastic restoring forces are assumed to be nonlinear and the effects of couple unbalance are also included but, unlike the Jeffcott rotor, the system exhibits six degrees-of-freedom. The Lagrangian coordinates were fixed so as to coincide with the three coordinates of the centre of mass of the rotor and the three angular coordinates needed in order to express the rotor''s rotations with respect to a reference frame having its origin in the centre of mass. The precession motions of such a rotor turn out to be cylindrical at low angular speeds and exhibit a conical aspect when operating at higher speeds. The motion equations of the rotor were written with reference to a system that was subsequently adopted for the experimental analysis. The particular feature of this system was the use of a steel wire (piano wire) for the rotor shaft, suitably constrained and with the possibility of regulating the tension of the wire itself, in order to increase or reduce the nonlinear character of the system. The numerical analysis performed with integration of the motion equations made it possible to point out that chaotic solutions were manifested only when the tension in the wire was given the lowest values – i.e. when the system was strongly nonlinear – in the presence of considerable damping and rotor unbalance values that were so high as to lose any practical significance. Under conditions commonly shared by analogous real systems characterised by poor damping, where the contribution to nonlinearity is almost entirely due to elastic restoring forces, the analysis pointed out that precession motions may be manifested with a periodic character, whether synchronous or not, or a quasi-periodic character, but in no case is the solution chaotic.
1999
Dynamics of a rigid unbalanced rotor with nonlinear elastic restoring forces. Part I: theoretical analysis / Guido, ANGELO RAFFAELE; Adiletta, Giovanni. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. - STAMPA. - 19:4(1999), pp. 359-385. [10.1023/A:1008336006400]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/371795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact