A model able to describe all the processes involved in a debris flow can be very complex owing to the sudden changing of the material that turns from solid into liquid state. The two phases of the phenomenon are analysed separately referring to soil mechanics procedures with regard to the trigger phase, and to an equivalent fluid for the postfailure phase. The present paper is devoted to show the experimental results carried out to evaluate the behaviour assumed by a pyroclastic-derived soil during the flow. A traditional fluid tool has been utilized: a standard rotational rheometer equipped with two different geometries. The soils tested belong to deposits that cover the slopes of the Campania region, Italy, often affected by debris flows. The influence of solid concentration Cv and grain size distribution was tested: the soils were destructurated, sieved and mixed with water starting from the in situ porosity. All material mixtures showed a non-Newtonian fluid behaviour with a yield stress y that increases with a solid volumetric concentration and decreases for an increase of sand fraction. The experimental data were fitted with standard model for fluids. A simple relation between Cv and y was obtained. The yield stress seems to be a key parameter for describing and predicting the post-failure behaviour of debris flows. These results suggest that in the field a small change in solid fraction, due to rainfall, will cause a slight decrease of the static yield stress, readily inducing a rapid flow which will stop only when the dynamic yield stress is reached, namely on a much smoother slope. This can explain the in situ observed post-failure behaviour of debris flows, which are able to flow over very long distances even on smooth slopes.

Experimental study on the rheological behaviour of debris flow / SCOTTO DI SANTOLO, Anna; A. M., Pellegrino; Evangelista, Aldo. - In: NATURAL HAZARDS AND EARTH SYSTEM SCIENCES. - ISSN 1561-8633. - STAMPA. - 10(2010), pp. 2507-2514. [10.5194/nhess-10-2507-2010]

Experimental study on the rheological behaviour of debris flow

SCOTTO DI SANTOLO, ANNA;EVANGELISTA, ALDO
2010

Abstract

A model able to describe all the processes involved in a debris flow can be very complex owing to the sudden changing of the material that turns from solid into liquid state. The two phases of the phenomenon are analysed separately referring to soil mechanics procedures with regard to the trigger phase, and to an equivalent fluid for the postfailure phase. The present paper is devoted to show the experimental results carried out to evaluate the behaviour assumed by a pyroclastic-derived soil during the flow. A traditional fluid tool has been utilized: a standard rotational rheometer equipped with two different geometries. The soils tested belong to deposits that cover the slopes of the Campania region, Italy, often affected by debris flows. The influence of solid concentration Cv and grain size distribution was tested: the soils were destructurated, sieved and mixed with water starting from the in situ porosity. All material mixtures showed a non-Newtonian fluid behaviour with a yield stress y that increases with a solid volumetric concentration and decreases for an increase of sand fraction. The experimental data were fitted with standard model for fluids. A simple relation between Cv and y was obtained. The yield stress seems to be a key parameter for describing and predicting the post-failure behaviour of debris flows. These results suggest that in the field a small change in solid fraction, due to rainfall, will cause a slight decrease of the static yield stress, readily inducing a rapid flow which will stop only when the dynamic yield stress is reached, namely on a much smoother slope. This can explain the in situ observed post-failure behaviour of debris flows, which are able to flow over very long distances even on smooth slopes.
2010
Experimental study on the rheological behaviour of debris flow / SCOTTO DI SANTOLO, Anna; A. M., Pellegrino; Evangelista, Aldo. - In: NATURAL HAZARDS AND EARTH SYSTEM SCIENCES. - ISSN 1561-8633. - STAMPA. - 10(2010), pp. 2507-2514. [10.5194/nhess-10-2507-2010]
File in questo prodotto:
File Dimensione Formato  
nhess-10-2507-2010.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/371434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact