Standard clustering methods fail when data are characterized by non-linear associations. A suitable solution consists in mapping data in a higher dimensional feature space where clusters are separable. The aim of the present contribution is to propose a new technique in this context to identify interesting patterns in large datasets.

Clustering in feature space for interesting pattern identification / Marino, Marina; Palumbo, Francesco; C., Tortora. - STAMPA. - (2009), pp. 459-462. (Intervento presentato al convegno Statistical Methods for the Analysis of Large Data-Sets tenutosi a Pescara nel 23-25 Settembre 2009).

Clustering in feature space for interesting pattern identification.

MARINO, MARINA;PALUMBO, FRANCESCO;
2009

Abstract

Standard clustering methods fail when data are characterized by non-linear associations. A suitable solution consists in mapping data in a higher dimensional feature space where clusters are separable. The aim of the present contribution is to propose a new technique in this context to identify interesting patterns in large datasets.
2009
9788861294257
Clustering in feature space for interesting pattern identification / Marino, Marina; Palumbo, Francesco; C., Tortora. - STAMPA. - (2009), pp. 459-462. (Intervento presentato al convegno Statistical Methods for the Analysis of Large Data-Sets tenutosi a Pescara nel 23-25 Settembre 2009).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/369152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact