Abstract. A ButlerB(2)-group G is a sum of finitely many torsionfree Abelian groups of rank 1, subject to two independent relations. In a paper appeared in the Volume in memory of A.L.S. Corner [DVM 12] we showed that the decom- posability of G depends on the occurrence of a certain type. We study here the types of G, determining which depend only on the two main structures of G - the base types and the basic partition - and which instead depend on the coefficients of the relations. We give an algorithm to compute the types σ of the first kind, and study the rank of the group G(σ) of elements of G with type ≥ σ.
On the typeset of a B(2)-group / DE VIVO, Clorinda; Metelli, Claudia. - In: HOUSTON JOURNAL OF MATHEMATICS. - ISSN 0362-1588. - STAMPA. - (In corso di stampa), pp. ?-?.
On the typeset of a B(2)-group
DE VIVO, CLORINDA;METELLI, CLAUDIA
In corso di stampa
Abstract
Abstract. A ButlerB(2)-group G is a sum of finitely many torsionfree Abelian groups of rank 1, subject to two independent relations. In a paper appeared in the Volume in memory of A.L.S. Corner [DVM 12] we showed that the decom- posability of G depends on the occurrence of a certain type. We study here the types of G, determining which depend only on the two main structures of G - the base types and the basic partition - and which instead depend on the coefficients of the relations. We give an algorithm to compute the types σ of the first kind, and study the rank of the group G(σ) of elements of G with type ≥ σ.File | Dimensione | Formato | |
---|---|---|---|
Articolo.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Accesso privato/ristretto
Dimensione
450.25 kB
Formato
Adobe PDF
|
450.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.