We analyse the real Continuous Wavelet Transform 2D (CWT2D) of potential fields for the investigation of potential field singularities. We focus our attention to extended geological sources, in order to verify the reliability of this method with realistic fields. 3D space-scale representation (3D Scalogram) related to synthetic models were generated, showing the Wavelet Transform Modulus Maxima (WTMM) at each scale. The WTMM are related to the shape of the source, so defining some sort of source boundary analysis through the CWT. Wavelets of different order may help to gain resolution and define source features. Selecting a range of scales where the sources behave as if they are approximately isolated, the depth to the source may be estimated basing on the property that the lines joining the modulus maxima of the wavelet coefficients at different scales (WTMML) intersect each other at the edges of the causative body. Therefore, it is possible to manage the information contained in the wavelet transform of fields related to extended sources. In the real case of the anomaly gravity map of the Vesuvius area (Italy), we estimated the depth of the Mesozoic carbonate basement in the Pompei Basin. We showed also how the WTMML information can be integrated to that of another multiscale method, the Depth from Extreme Points (DEXP) transformation, which is also related to the source density distribution of a given region.

2D Continuous Wavelet Transform of potential fields due to extendedsource distributions

FEDI, MAURIZIO;
2010

Abstract

We analyse the real Continuous Wavelet Transform 2D (CWT2D) of potential fields for the investigation of potential field singularities. We focus our attention to extended geological sources, in order to verify the reliability of this method with realistic fields. 3D space-scale representation (3D Scalogram) related to synthetic models were generated, showing the Wavelet Transform Modulus Maxima (WTMM) at each scale. The WTMM are related to the shape of the source, so defining some sort of source boundary analysis through the CWT. Wavelets of different order may help to gain resolution and define source features. Selecting a range of scales where the sources behave as if they are approximately isolated, the depth to the source may be estimated basing on the property that the lines joining the modulus maxima of the wavelet coefficients at different scales (WTMML) intersect each other at the edges of the causative body. Therefore, it is possible to manage the information contained in the wavelet transform of fields related to extended sources. In the real case of the anomaly gravity map of the Vesuvius area (Italy), we estimated the depth of the Mesozoic carbonate basement in the Pompei Basin. We showed also how the WTMML information can be integrated to that of another multiscale method, the Depth from Extreme Points (DEXP) transformation, which is also related to the source density distribution of a given region.
File in questo prodotto:
File Dimensione Formato  
Fedi 2010 Appl Comput Harmon A.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/366787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 28
social impact