Standard clustering methods fail when data are characterized by non-linear associations. A suitable solution consists in mapping data in a higher dimensional feature space where clusters are separable. The aim of the present contribution is to propose a new technique in this context and to compare it with k-means technique.
A comparison between K-means and Support Vector Clustering for Categorical Data / Marino, Marina; Tortora, Cristina. - In: STATISTICA APPLICATA. - ISSN 1125-1964. - STAMPA. - 21:1(2009), pp. 5-16.
A comparison between K-means and Support Vector Clustering for Categorical Data
MARINO, MARINA;TORTORA, CRISTINA
2009
Abstract
Standard clustering methods fail when data are characterized by non-linear associations. A suitable solution consists in mapping data in a higher dimensional feature space where clusters are separable. The aim of the present contribution is to propose a new technique in this context and to compare it with k-means technique.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
full-text.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
109.56 kB
Formato
Adobe PDF
|
109.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.