Vortex drop shafts are used in urban drainage systems to connect two sewers located at considerably different elevations by means of a vertical conduit. The vortex drop shaft was first designed by Drioli (1947). It was then studied by other authors with reference to subcritical approach flow. Vortex shafts specifically conceived for supercritical flow can also be used, but at very high costs due to the special features required for the intake structure. The present study shows the experimental results of a specific investigation into the changes to be made in the approach channel for supercritical flow, when a subcritical vortex intake is used. The proposals concern the definition of the height of the step to be located in the approach channel, and the length of the lower-bottomed section in the approach channel, while maximizing the hydraulic efficiency of the system. Proper step height will cause the hydraulic jump to conveniently occur downstream of the step, whereas a regular subcritical flow in the intake structure of vortex shaft will result from lowering the bottom of the approach channel for the appropriate length.

Vortex shaft inlet structure for supercritical flow approach channel

DEL GIUDICE, GIUSEPPE;RASULO, GIACOMO
2009

Abstract

Vortex drop shafts are used in urban drainage systems to connect two sewers located at considerably different elevations by means of a vertical conduit. The vortex drop shaft was first designed by Drioli (1947). It was then studied by other authors with reference to subcritical approach flow. Vortex shafts specifically conceived for supercritical flow can also be used, but at very high costs due to the special features required for the intake structure. The present study shows the experimental results of a specific investigation into the changes to be made in the approach channel for supercritical flow, when a subcritical vortex intake is used. The proposals concern the definition of the height of the step to be located in the approach channel, and the length of the lower-bottomed section in the approach channel, while maximizing the hydraulic efficiency of the system. Proper step height will cause the hydraulic jump to conveniently occur downstream of the step, whereas a regular subcritical flow in the intake structure of vortex shaft will result from lowering the bottom of the approach channel for the appropriate length.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/365352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact