We study magnetization dynamics in spin-transfer devices subject to DC and microwave injected currents. When the frequency of the injected current is sufficiently close to the self-oscillation frequency of the device, phase-locking occurs. This phenomenon is theoretically studied by using Landau-Lifshitz equation with Slonczewski spin-torque term. By exploiting separation of time scales and using averaging technique, we derive equations which are applicable to the study of phase-locking for arbitrary large magnetization motion. The stability diagram in the (detuning, ac current)-plane is determined and it is shown that phase locking is hysteretic at sufficiently large ac currents.

Theory of Injection Locking for Large Magnetization Motion in Spin-Transfer Nano-Oscillators

SERPICO, CLAUDIO;D'AQUINO, MASSIMILIANO
2009

Abstract

We study magnetization dynamics in spin-transfer devices subject to DC and microwave injected currents. When the frequency of the injected current is sufficiently close to the self-oscillation frequency of the device, phase-locking occurs. This phenomenon is theoretically studied by using Landau-Lifshitz equation with Slonczewski spin-torque term. By exploiting separation of time scales and using averaging technique, we derive equations which are applicable to the study of phase-locking for arbitrary large magnetization motion. The stability diagram in the (detuning, ac current)-plane is determined and it is shown that phase locking is hysteretic at sufficiently large ac currents.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/365340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact