A thermodynamic framework endowed with the concept of non-locality residual is adopted to derive non-local models of integral-type for non-homogeneous linear elastic materials. Two expressions of the free energy are considered: the former yields a one-component non-local stress, the latter leads to a two-component local–non-local stress since the stress is expressed as the sum of the classical local stress and of a non-local component identically vanishing in the case of constant strains. The attenuation effects are accounted for by a symmetric space weight function which guarantees the constant strain requirement as well as the dual constant stress condition everywhere in the body. The non-local and non-homogeneous elastic structural boundary-value problem under quasi-static loads is addressed in a geometrically linear range. The complete set of variational formulations for the structural problem is then provided in a unitary framework. The solution uniqueness of the non-local structural model is proved and the non-local FEM is addressed starting from the non-local counterpart of the total potential energy. Numerical applications are provided with reference to a non-homogeneous bar in tension using the Fredholm integral equation and the non-local FEM. The solutions show no pathological features such as numerical instability and mesh sensitivity for degraded bar conditions.

On non-local and non-homogeneous elastic continua

MAROTTI DE SCIARRA, FRANCESCO
2009

Abstract

A thermodynamic framework endowed with the concept of non-locality residual is adopted to derive non-local models of integral-type for non-homogeneous linear elastic materials. Two expressions of the free energy are considered: the former yields a one-component non-local stress, the latter leads to a two-component local–non-local stress since the stress is expressed as the sum of the classical local stress and of a non-local component identically vanishing in the case of constant strains. The attenuation effects are accounted for by a symmetric space weight function which guarantees the constant strain requirement as well as the dual constant stress condition everywhere in the body. The non-local and non-homogeneous elastic structural boundary-value problem under quasi-static loads is addressed in a geometrically linear range. The complete set of variational formulations for the structural problem is then provided in a unitary framework. The solution uniqueness of the non-local structural model is proved and the non-local FEM is addressed starting from the non-local counterpart of the total potential energy. Numerical applications are provided with reference to a non-homogeneous bar in tension using the Fredholm integral equation and the non-local FEM. The solutions show no pathological features such as numerical instability and mesh sensitivity for degraded bar conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/362959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 36
social impact