The recognition and pairing of specific DNA loci, though crucial for a plenty of important cellular processes, are produced by still mysterious physical mechanisms. We propose the first quantitative model from Statistical Mechanics, able to clarify the interaction allowing such “DNA cross-talk” events. Soluble molecules, which bind some DNA recognition sequences, produce an effective attraction between distant DNA loci; if their affinity, their concentration, and the relative DNA binding sites number exceed given thresholds, DNA colocalization occurs as a result of a thermodynamic phase transition. In this paper, after a concise report on some of the most recent experimental results, we introduce our model and carry out a detailed “in silico” analysis of it, by means of Monte Carlo simulations. Our studies, while rationalize several experimental observations, result in very interesting and testable predictions.

DNA loci cross-talk through thermodynamics

NICODEMI, MARIO
2009

Abstract

The recognition and pairing of specific DNA loci, though crucial for a plenty of important cellular processes, are produced by still mysterious physical mechanisms. We propose the first quantitative model from Statistical Mechanics, able to clarify the interaction allowing such “DNA cross-talk” events. Soluble molecules, which bind some DNA recognition sequences, produce an effective attraction between distant DNA loci; if their affinity, their concentration, and the relative DNA binding sites number exceed given thresholds, DNA colocalization occurs as a result of a thermodynamic phase transition. In this paper, after a concise report on some of the most recent experimental results, we introduce our model and carry out a detailed “in silico” analysis of it, by means of Monte Carlo simulations. Our studies, while rationalize several experimental observations, result in very interesting and testable predictions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/358731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact