Self-assembled monolayers are surfaces consisting of a single layer of molecules on a substrate: widespread examples of chemical and biological nature are alkylsiloxane, fatty acids, and alkanethiolate which can be deposited by different techniques on a large variety of substrates ranging from metals to oxides. In this paper, we demonstrate that a self-assembled biofilm of proteins can passivate porous silicon (PSi) based optical structures without affecting the transducing properties. Moreover, the protein coated PSi layer can also be used as a functionalized surface for proteomic applications

Biological passivation of porous silicon by a self-assembled nanometric biofilm of proteins

GIARDINA, PAOLA;LONGOBARDI, SARA;
2009

Abstract

Self-assembled monolayers are surfaces consisting of a single layer of molecules on a substrate: widespread examples of chemical and biological nature are alkylsiloxane, fatty acids, and alkanethiolate which can be deposited by different techniques on a large variety of substrates ranging from metals to oxides. In this paper, we demonstrate that a self-assembled biofilm of proteins can passivate porous silicon (PSi) based optical structures without affecting the transducing properties. Moreover, the protein coated PSi layer can also be used as a functionalized surface for proteomic applications
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/355852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact