In this paper, we propose several initial values for the EM algorithm of maximum likelihood estimates of the parameters in a class of models, called CUB, recently introduced for ordinal data. Specifically, we compare the algorithmic efficiency of each estimator with respect to a naive proposal through a vast simulation experiment. The results confirm a substantial gain in efficiency of the moments estimators over the whole parametric space. Then, some extensions are also discussed and several applications to real data sets are presented.
Titolo: | A comparison of preliminary estimators in a class of ordinal data models | |
Autori: | ||
Data di pubblicazione: | 2009 | |
Rivista: | ||
Abstract: | In this paper, we propose several initial values for the EM algorithm of maximum likelihood estim...ates of the parameters in a class of models, called CUB, recently introduced for ordinal data. Specifically, we compare the algorithmic efficiency of each estimator with respect to a naive proposal through a vast simulation experiment. The results confirm a substantial gain in efficiency of the moments estimators over the whole parametric space. Then, some extensions are also discussed and several applications to real data sets are presented. | |
Handle: | http://hdl.handle.net/11588/353654 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.