Misfolding of the prion protein (PrP) is associated with the development of Transmissible Spongiform Encephalopathies. The recent crystal structure of 'steric zipper' aggregates of the peptide SNQNNF (human PrP fragment 170-175) has highlighted its potential involvement in the misfolding process. A detailed molecular dynamics investigation on SNQNNF aggregates has been performed to analyze the behavior of the assemblies in a non-crystalline context. Stability, dynamics, and structural features suggest that SNQNNF assemblies are very good candidates to be involved in the structure of PrP fibrils. In addition, the analysis of small aggregates shows that steric zipper interfaces are able to stabilize assemblies composed of four strands per sheet. Altogether, the present findings indicate that steric zipper may play a key role in prion diseases. This suggestion is also corroborated by MD analyses of point mutations within the region 170-175.

Structure, dynamics, and stability of assemblies of the human prion fragment SNQNNF / De Simone, A; Pedone, Carlo; Vitagliano, L.. - In: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. - ISSN 0006-291X. - STAMPA. - 366:3(2008), pp. 800-806.

Structure, dynamics, and stability of assemblies of the human prion fragment SNQNNF

PEDONE, CARLO;
2008

Abstract

Misfolding of the prion protein (PrP) is associated with the development of Transmissible Spongiform Encephalopathies. The recent crystal structure of 'steric zipper' aggregates of the peptide SNQNNF (human PrP fragment 170-175) has highlighted its potential involvement in the misfolding process. A detailed molecular dynamics investigation on SNQNNF aggregates has been performed to analyze the behavior of the assemblies in a non-crystalline context. Stability, dynamics, and structural features suggest that SNQNNF assemblies are very good candidates to be involved in the structure of PrP fibrils. In addition, the analysis of small aggregates shows that steric zipper interfaces are able to stabilize assemblies composed of four strands per sheet. Altogether, the present findings indicate that steric zipper may play a key role in prion diseases. This suggestion is also corroborated by MD analyses of point mutations within the region 170-175.
2008
Structure, dynamics, and stability of assemblies of the human prion fragment SNQNNF / De Simone, A; Pedone, Carlo; Vitagliano, L.. - In: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. - ISSN 0006-291X. - STAMPA. - 366:3(2008), pp. 800-806.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/348322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact