A digital-signal-processing-based instrument for phase noise measurement on sinusoidal signals is described. It incorporates a special hardware architecture, which is made up of a core digital signal processor that is connected to a data acquisition board, and takes advantage of a new measurement procedure based on a quadrature demodulation scheme, which has been proposed by the authors. Thanks to an optimized implementation of this procedure, the instrument exploits all its hardware resources to achieve high performance and real-time operation. For input frequencies of up to some hundreds of kilohertz, the instrument proves to be capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory and of granting frequency resolution as good as a few units of hertz.

A digital signal processing instrument for real time phase noise measurements

ANGRISANI, LEOPOLDO;D'ARCO, MAURO;SCHIANO LO MORIELLO, ROSARIO
2008

Abstract

A digital-signal-processing-based instrument for phase noise measurement on sinusoidal signals is described. It incorporates a special hardware architecture, which is made up of a core digital signal processor that is connected to a data acquisition board, and takes advantage of a new measurement procedure based on a quadrature demodulation scheme, which has been proposed by the authors. Thanks to an optimized implementation of this procedure, the instrument exploits all its hardware resources to achieve high performance and real-time operation. For input frequencies of up to some hundreds of kilohertz, the instrument proves to be capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory and of granting frequency resolution as good as a few units of hertz.
File in questo prodotto:
File Dimensione Formato  
A digital signal processing instrument for real-time phase noise measurement.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/346702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact