Radar rainfall data are affected by several types of error. Beside the error in the measurement of the rainfall reflectivity and its transformation into rainfall intensity, random errors can be generated by the temporal spacing of the radar scans. The aim of this work is to analize the sensitivity of the estimated rainfall maps to the radar sampling interval, i.e. the time interval between two consecutive radar scans. This analysis has been performed employing data collected with a polarimetric C-band radar in Rome, Italy. The radar data consist of reflectivity maps with a sampling interval of 1min and a spatial resolution of 300m, covering an area of 1296km2. The transformation of the reflectivity maps in rainfall fields has been validated against rainfall data collected by a network of 14 raingauges distributed across the study area. Accumulated rainfall maps have been calculated for different spatial resolutions (from 300m to 2400m) and different sampling intervals (from 1min to 16min). The observed differences between the estimated rainfall maps are significant, showing that the sampling interval can be an important source of error in radar rainfall measurements.
Sampling errors in rainfall measurements by weather radar / F., Piccolo; Chirico, GIOVANNI BATTISTA. - In: ADVANCES IN GEOSCIENCES. - ISSN 1680-7359. - ELETTRONICO. - 2:(2005), pp. 151-155.
Sampling errors in rainfall measurements by weather radar
CHIRICO, GIOVANNI BATTISTA
2005
Abstract
Radar rainfall data are affected by several types of error. Beside the error in the measurement of the rainfall reflectivity and its transformation into rainfall intensity, random errors can be generated by the temporal spacing of the radar scans. The aim of this work is to analize the sensitivity of the estimated rainfall maps to the radar sampling interval, i.e. the time interval between two consecutive radar scans. This analysis has been performed employing data collected with a polarimetric C-band radar in Rome, Italy. The radar data consist of reflectivity maps with a sampling interval of 1min and a spatial resolution of 300m, covering an area of 1296km2. The transformation of the reflectivity maps in rainfall fields has been validated against rainfall data collected by a network of 14 raingauges distributed across the study area. Accumulated rainfall maps have been calculated for different spatial resolutions (from 300m to 2400m) and different sampling intervals (from 1min to 16min). The observed differences between the estimated rainfall maps are significant, showing that the sampling interval can be an important source of error in radar rainfall measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.