We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their n2 dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.

Physically inspired models for the synthesis of stiff strings using dispersive waveguide / Testa, Italo; Evangelista, Gianpaolo; Cavaliere, Sergio. - In: EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING. - ISSN 1110-8657. - STAMPA. - 2004:7(2004), pp. 964-977. [10.1155/S1110865704402200]

Physically inspired models for the synthesis of stiff strings using dispersive waveguide

TESTA, ITALO;EVANGELISTA, GIANPAOLO;CAVALIERE, SERGIO
2004

Abstract

We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their n2 dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.
2004
Physically inspired models for the synthesis of stiff strings using dispersive waveguide / Testa, Italo; Evangelista, Gianpaolo; Cavaliere, Sergio. - In: EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING. - ISSN 1110-8657. - STAMPA. - 2004:7(2004), pp. 964-977. [10.1155/S1110865704402200]
File in questo prodotto:
File Dimensione Formato  
Physically.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 389.04 kB
Formato Adobe PDF
389.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/342793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact