The fuzzy disc is a matrix approximation of the functions on a disc which preserves rotational symmetry. In this paper we introduce a basis for the algebra of functions on the fuzzy disc in terms of the eigenfunctions of a properly defined fuzzy Laplacian. In the commutative limit they tend to the eigenfunctions of the ordinary Laplacian on the disc, i.e. Bessel functions of the first kind, thus deserving the name of fuzzy Bessel functions.

The Beat of a fuzzy drum: Fuzzy Bessel functions for the disc

LIZZI, FEDELE;VITALE, PATRIZIA;ZAMPINI, ALESSANDRO
2005

Abstract

The fuzzy disc is a matrix approximation of the functions on a disc which preserves rotational symmetry. In this paper we introduce a basis for the algebra of functions on the fuzzy disc in terms of the eigenfunctions of a properly defined fuzzy Laplacian. In the commutative limit they tend to the eigenfunctions of the ordinary Laplacian on the disc, i.e. Bessel functions of the first kind, thus deserving the name of fuzzy Bessel functions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/335591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact