A group G is metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a finitely generated soluble group is metahamiltonian if and only if all its finite homomorphic images are metahamiltonian; the behaviour of soluble minimax groups with metahamiltonian finite homomorphic images is also investigated. Moreover, groups satisfying the minimal condition on non-metahamiltonian subgroups are described.

Groups whose finite homomorphic images are metahamiltonian

DE FALCO, MARIA;DE GIOVANNI, FRANCESCO;MUSELLA, CARMELA
2009

Abstract

A group G is metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a finitely generated soluble group is metahamiltonian if and only if all its finite homomorphic images are metahamiltonian; the behaviour of soluble minimax groups with metahamiltonian finite homomorphic images is also investigated. Moreover, groups satisfying the minimal condition on non-metahamiltonian subgroups are described.
File in questo prodotto:
File Dimensione Formato  
MetahamiltonianImages.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 113.87 kB
Formato Adobe PDF
113.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/315324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact