We prove that if the exponent function $p((.))$ satisfies log-Holder continuity conditions locally and at infinity, then the fractional maximal operator $M_\alpha$, $0<\alpha <n%, maps $L^{p(.)}$ to $L^{q(.)}$, where $1/p(x) - 1/q(x) = \alpha /n$. We also prove a weak-type inequality corresponding to the weak $(1, n/(n - a))$ inequality for $M_\alpha$. We build upon earlier work on the Hardy-Littlewood maximal operator by Cruz-Uribe, Fiorenza and Neugebauer. As a consequence of these results for $M_\alpha$, we show that the fractional integral operator $I_\alpha$ satisfies the same norm inequalities. These in turn yield a generalization of the Sobolev embedding theorem to variable $L^p$ spaces.

The fractional maximal operator and fractional integrals on variable $L^p$ spaces / C., Capone; D., CRUZ URIBE; Fiorenza, Alberto. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 23:3(2007), pp. 743-770.

The fractional maximal operator and fractional integrals on variable $L^p$ spaces

FIORENZA, ALBERTO
2007

Abstract

We prove that if the exponent function $p((.))$ satisfies log-Holder continuity conditions locally and at infinity, then the fractional maximal operator $M_\alpha$, $0<\alpha
2007
The fractional maximal operator and fractional integrals on variable $L^p$ spaces / C., Capone; D., CRUZ URIBE; Fiorenza, Alberto. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 23:3(2007), pp. 743-770.
File in questo prodotto:
File Dimensione Formato  
FiorenzaIbero07.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 255.44 kB
Formato Adobe PDF
255.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/300762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 151
  • ???jsp.display-item.citation.isi??? 152
social impact