We show that many classical operators in harmonic analysis ---such as maximal operators, singular integrals, commutators and fractional integrals--- are bounded on the variable Lebesgue space $L^{p(\cdot)}$ whenever the Hardy-Littlewood maximal operator is bounded on $L^{p(\cdot)}$. Further, we show that such operators satisfy vector-valued inequalities. We do so by applying the theory of weighted norm inequalities and extrapolation. As applications we prove the Calder\'on-Zygmund inequality for solutions of $\bigtriangleup u=f$ in variable Lebesgue spaces, and prove the Calder\'on extension theorem for variable Sobolev spaces.

The boundedness of classical operators on variable L^p spaces / D., CRUZ URIBE; Fiorenza, Alberto; J. M., Martell; C., Perez. - In: ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA. - ISSN 1239-629X. - STAMPA. - 31:(2006), pp. 239-264.

The boundedness of classical operators on variable L^p spaces

FIORENZA, ALBERTO;
2006

Abstract

We show that many classical operators in harmonic analysis ---such as maximal operators, singular integrals, commutators and fractional integrals--- are bounded on the variable Lebesgue space $L^{p(\cdot)}$ whenever the Hardy-Littlewood maximal operator is bounded on $L^{p(\cdot)}$. Further, we show that such operators satisfy vector-valued inequalities. We do so by applying the theory of weighted norm inequalities and extrapolation. As applications we prove the Calder\'on-Zygmund inequality for solutions of $\bigtriangleup u=f$ in variable Lebesgue spaces, and prove the Calder\'on extension theorem for variable Sobolev spaces.
2006
The boundedness of classical operators on variable L^p spaces / D., CRUZ URIBE; Fiorenza, Alberto; J. M., Martell; C., Perez. - In: ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA. - ISSN 1239-629X. - STAMPA. - 31:(2006), pp. 239-264.
File in questo prodotto:
File Dimensione Formato  
FiorenzaFennicae06.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 222.32 kB
Formato Adobe PDF
222.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/300734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 409
  • ???jsp.display-item.citation.isi??? 411
social impact