Localized heating during welding, followed by rapid cooling, usually generates residual stresses in the weld and in the base metal. Residual stresses in welding processes give significant problems in the accurate manufacture of structures because those stresses heavily induce the formation of cracks in the fusion zone in high strength steels. Therefore, estimating the magnitude and distribution of welding residual stresses and characterizing the effects of certain welding conditions on the residual stresses are deemed necessary. In this work, residual stresses and distortions on butt welded joints are numerically evaluated by means of finite element method. The FE analysis allows to highlight and evaluate the stress field and his gradient around the fusion zone of welded joints, higher than any other located in the surrounding area. Temperature-dependent material properties, welding velocity, external mechanism constraints, technique of 'element birth and death' and latent heat of fusion are also taken into account. Some numerical results are compared with experimental data showing a very good correlation.

Finite element analysis of residual stresses on butt welded joints

ARMENTANI, ENRICO;ESPOSITO, RENATO;SEPE, RAFFAELE
2006

Abstract

Localized heating during welding, followed by rapid cooling, usually generates residual stresses in the weld and in the base metal. Residual stresses in welding processes give significant problems in the accurate manufacture of structures because those stresses heavily induce the formation of cracks in the fusion zone in high strength steels. Therefore, estimating the magnitude and distribution of welding residual stresses and characterizing the effects of certain welding conditions on the residual stresses are deemed necessary. In this work, residual stresses and distortions on butt welded joints are numerically evaluated by means of finite element method. The FE analysis allows to highlight and evaluate the stress field and his gradient around the fusion zone of welded joints, higher than any other located in the surrounding area. Temperature-dependent material properties, welding velocity, external mechanism constraints, technique of 'element birth and death' and latent heat of fusion are also taken into account. Some numerical results are compared with experimental data showing a very good correlation.
0-7918-4251-7
File in questo prodotto:
File Dimensione Formato  
Armentani_Esposito_Sepe.pdf

solo utenti autorizzati

Licenza: Accesso privato/ristretto
Dimensione 433.63 kB
Formato Adobe PDF
433.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/203764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 1
social impact