EGFR) may play a relevant role in the progression, hormone therapy resistance, and prognosis of prostate cancer patients. Also MDM2, a negative p53 regulator that interacts with retinoblastoma (Rb), E2F, p19arf and the rasmitogen- activated protein kinase(MAPK) cascade plays an important role in prostate cancer progression and prognosis. On the basis of the EGFR and MDM2 role in integrating signaling pathways critical for prostate cancer progression, we investigated whether their selective combined blockade may have a cooperative antitumor effect in prostate cancer. For this purpose, we have used the EGFR tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) and a second generation hybrid oligonucleotide antisense MDM2 (AS-MDM2), respectively. Experimental Design: Gefitinib and AS-MDM2 were administered to hormone-refractory and hormone-dependent human prostate cancer cells in vitro and to mice bearing tumor xenografts, evaluating the effects on growth, apoptosis, and protein expression, in vitro and in vivo. Results: We demonstrated that the combination of gefitinib and AS-MDM2 synergistically inhibits the growth of hormone-independent prostate cancer cells in vitro. This effect is accompanied by the inhibition of MDM2, phosphorylated Akt (pAkt), phosphorylated MAPK (pMAPK), and vascular endothelial growth factor (VEGF) expression and by Rb hypophosphorylation. The combination of the two agents in nude mice bearing the same hormone-independent tumors caused a potent cooperative antitumor effect. Tumor samples analysis confirmed the inhibition of MDM2, pAkt, pMAPK, VEGF, and basic fibroblast growth factor expression. Conclusions: This study shows that EGFR and MDM2 play a critical role in the growth of prostate cancer, especially hormone-dependent, and that their combined blockade by gefitinib and AS-MDM2 causes a cooperative antitumor effect, supporting the clinical development of this therapeutic strategy.

COMBINED TARGETING OF EGFR AND MDM2 BY GEFITINIB AND ANTISENSE MDM2 COOPERATIVELY INHIBIT HORMONE-INDEPENDENT PROSTATE CANCER / Bianco, Roberto; Caputo, R; Caputo, R; Damiano, V; DE PLACIDO, Sabino; Ficorella, C; Agrawal, S; Bianco, Ar; Ciardiello, F; G., Tortora. - In: CLINICAL CANCER RESEARCH. - ISSN 1078-0432. - STAMPA. - 10:(2004), pp. 4858-4864. [10.1158/1078-0432.CCR-03-0497]

COMBINED TARGETING OF EGFR AND MDM2 BY GEFITINIB AND ANTISENSE MDM2 COOPERATIVELY INHIBIT HORMONE-INDEPENDENT PROSTATE CANCER.

BIANCO, ROBERTO;DE PLACIDO, SABINO;
2004

Abstract

EGFR) may play a relevant role in the progression, hormone therapy resistance, and prognosis of prostate cancer patients. Also MDM2, a negative p53 regulator that interacts with retinoblastoma (Rb), E2F, p19arf and the rasmitogen- activated protein kinase(MAPK) cascade plays an important role in prostate cancer progression and prognosis. On the basis of the EGFR and MDM2 role in integrating signaling pathways critical for prostate cancer progression, we investigated whether their selective combined blockade may have a cooperative antitumor effect in prostate cancer. For this purpose, we have used the EGFR tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) and a second generation hybrid oligonucleotide antisense MDM2 (AS-MDM2), respectively. Experimental Design: Gefitinib and AS-MDM2 were administered to hormone-refractory and hormone-dependent human prostate cancer cells in vitro and to mice bearing tumor xenografts, evaluating the effects on growth, apoptosis, and protein expression, in vitro and in vivo. Results: We demonstrated that the combination of gefitinib and AS-MDM2 synergistically inhibits the growth of hormone-independent prostate cancer cells in vitro. This effect is accompanied by the inhibition of MDM2, phosphorylated Akt (pAkt), phosphorylated MAPK (pMAPK), and vascular endothelial growth factor (VEGF) expression and by Rb hypophosphorylation. The combination of the two agents in nude mice bearing the same hormone-independent tumors caused a potent cooperative antitumor effect. Tumor samples analysis confirmed the inhibition of MDM2, pAkt, pMAPK, VEGF, and basic fibroblast growth factor expression. Conclusions: This study shows that EGFR and MDM2 play a critical role in the growth of prostate cancer, especially hormone-dependent, and that their combined blockade by gefitinib and AS-MDM2 causes a cooperative antitumor effect, supporting the clinical development of this therapeutic strategy.
2004
COMBINED TARGETING OF EGFR AND MDM2 BY GEFITINIB AND ANTISENSE MDM2 COOPERATIVELY INHIBIT HORMONE-INDEPENDENT PROSTATE CANCER / Bianco, Roberto; Caputo, R; Caputo, R; Damiano, V; DE PLACIDO, Sabino; Ficorella, C; Agrawal, S; Bianco, Ar; Ciardiello, F; G., Tortora. - In: CLINICAL CANCER RESEARCH. - ISSN 1078-0432. - STAMPA. - 10:(2004), pp. 4858-4864. [10.1158/1078-0432.CCR-03-0497]
File in questo prodotto:
File Dimensione Formato  
Bianco MDMD2.full.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 293.65 kB
Formato Adobe PDF
293.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/202568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact