Tacrine heterobivalent ligands were designed as novel and reversible inhibitors of cholinesterases. On the basis of the investigation of the active site gorge topology of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) and by using flexible docking procedures, molecular modeling studies formulated the hypothesis of extra interaction sites in the active gorge of hBuChE, namely, a mid-gorge interaction site and a peripheral interaction site. The design strategy led to novel BuChE inhibitors, balancing potency and selectivity. Among the compounds identified, the heterobivalent ligand 4m, containing an amide nitrogen and a sulfur atom at the 8-membered tether level, is one of the most potent and selective BuChE inhibitors described to date. The novel inhibitors, bearing postulated key features, validated the hypothesis of the presence of extra interaction sites within the hBuChE active site gorge.

Development of Molecular Probes for the Identification of Extra Interaction Sites in the Mid-Gorge and Peripheral Sites of Butyrylcholinesterase (BuChE). Rational Design of Novel, Selective, and Highly Potent BuChE Inhibitors

FATTORUSSO, CATERINA;PERSICO, MARCO;CATALANOTTI, BRUNO;NOVELLINO, ETTORE;
2005

Abstract

Tacrine heterobivalent ligands were designed as novel and reversible inhibitors of cholinesterases. On the basis of the investigation of the active site gorge topology of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) and by using flexible docking procedures, molecular modeling studies formulated the hypothesis of extra interaction sites in the active gorge of hBuChE, namely, a mid-gorge interaction site and a peripheral interaction site. The design strategy led to novel BuChE inhibitors, balancing potency and selectivity. Among the compounds identified, the heterobivalent ligand 4m, containing an amide nitrogen and a sulfur atom at the 8-membered tether level, is one of the most potent and selective BuChE inhibitors described to date. The novel inhibitors, bearing postulated key features, validated the hypothesis of the presence of extra interaction sites within the hBuChE active site gorge.
File in questo prodotto:
File Dimensione Formato  
JMC05_ACHE_SI.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Accesso privato/ristretto
Dimensione 52.53 kB
Formato Adobe PDF
52.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
JMC05_ACHE.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 374.8 kB
Formato Adobe PDF
374.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/200969
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 69
social impact